→ Причина неумышленных нарушений информационной безопасности. Основные понятия в области информационной безопасности. Основные угрозы информационной безопасности

Причина неумышленных нарушений информационной безопасности. Основные понятия в области информационной безопасности. Основные угрозы информационной безопасности

В статье анализируются угрозы нарушения информационной безопасности информационных систем и существующие модели и методы противодействия компьютерным атакам. В статье так же рассматриваются проблемы обеспечения информационной безопасности.

Ключевые слова: информационная система, информационная безопасность, модели, методы, информационные угрозы

На сегодняшний день проблемам информационной безопасности (ИБ) как в масштабах государства, так и в

масштабах отдельного предприятия уделяется достаточное внимание, несмотря на это, количество потенциальных угроз не становится меньше.

Разнообразие угроз нарушения ИБ столь велико, что предусмотреть каждую достаточно трудно, но при этом задача выполнима.

С целью обеспечения заданного уровня защиты информации, необходимо, во-первых, выявить основные

угрозы нарушения ИБ для конкретного объекта информатизации, во-вторых спроектировать адекватную модель противодействия им и в дальнейшем еѐ реализовывать.

Под информационной угрозой обычно понимают потенциально существующую опасность преднамеренного или непреднамеренного (случайного) нарушения порядка хранения и обработки информации.

Процессы сбора, хранения, обработки и распространения информации, происходящие в информационной системе (ИС) обуславливают появление информационных угроз.

Угрозы ИБ можно классифицировать по нескольким основным критериям :

По природе возникновения (естественные, искусственные);

По аспекту ИБ (доступность, конфиденциальность, целостность);

По степени воздействия на ИС (пассивные, активные);

По компонентам ИС, на которые направлены угрозы (инфраструктура, каналы связи, аппаратное обеспечение, программное обеспечение);

По расположению источника угроз (внутренний, внешний);

По способу осуществления (случайные, преднамеренные).

На современном этапе развития средств защиты информации известны возможные угрозы ИБ предприятия независимо от формы собственности. К ним прежде всего относятся:

– преднамеренные действия сотрудников;

– случайные действия сотрудников;

– атаки хакеров с целью получения конфиденциальной информации или причинения вреда деятельности предприятия.

По мнению экспертов в области информационной безопасности более 90 % от всех преступлений в сфере информационных технологий совершают сотрудники организаций (внутренние пользователи).

На практике более часто информационные угрозы классифицируют исходя из их воздействия на основные свойства информации. Рассматривая данную проблему, в качестве основных свойств информации можно выделить :

· Целостность информации – свойство информации сохранять актуальность и непротиворечивость в процессе ее сбора, накопления, хранения, поиска и распространения; устойчивость информации к разрушению и несанкционированному изменению.

· Доступность информации – способность сохранять свою ценность в зависимости от оперативности ее использования и возможность быть предоставленной авторизированному пользователю в определенный период времени.

· Конфиденциальность информации – это свойство информации быть известной только допущенным и прошедшим проверку (авторизацию) субъектам предприятия (руководству, ответственным сотрудникам, пользователям информационной сети предприятия и т.п.) и терять свою ценность при раскрытии не авторизированному пользователю.

В дополнение вышеперечисленных свойств информации так же необходимо добавит значимость и уязвимость информации.

Значимость информации – это интегрированный показатель оценки качества информации, используемой в управлении конкретным видом деятельности, ее обобщающая характеристика, отражающая важность для принятия управленческих решений, практическую значимость для достижения конкретных результатов или реализации конкретных функций Уязвимость информации – возможность подвергнуться потенциальной утечке, физическому разрушению и несанкционированному использованию в рамках информационных процессов.

Из вышесказанного следует, что все более актуальной становится проблема обеспечения безопасности ИС. Очевидно, что ее решение должно осуществляться системно, на основе всестороннего исследования технологий обеспечения безопасности информационной сферы, моделей и методов противодействия компьютерным атакам.

На основе анализа литературы по системам обнаружения и анализа компьютерных атак, приведенные методы как правило не имеют достаточного математического описания. В основном они формализованы в виде способов и функций средств обнаружения компьютерных атак, используемых в инструментальных средствах средств предупреждения и обнаружения компьютерных атак . Проблемные вопросы противодействия компьютерным атакам в современной литературе самостоятельного отражения не нашли, поэтому анализ рассматриваемых методов осуществлен для известных методов обнаружения и анализа атак. Методы обнаружения и анализа несанкционированных воздействий на ресурс информационной системы можно разделить на:

− методы анализа сигнатур,

− методы обнаружения аномальных отклонений.

Методы анализа сигнатур предназначены для обнаружения известных атак и основаны на контроле программ и данных в ИС и эталонной сверке последовательности символов и событий в сети с базой данных сигнатур атак. Исходными данными для применения методов служат сведения из системных журналов общего и специального программного обеспечения, баз данных и ключевые слова сетевого трафика ИС. Достоинством данных методов является незначительные требования к вычислительным ресурсам ИС, сохранение высокой оперативности выполнения технологического цикла управления (ТЦУ) в ИС и достоверности обнаружения и анализа атак. Недостатком методов анализа сигнатур является невозможность обнаружения новых (модифицированных) атак без строгой формализации ключевых слов сетевого трафика и обновления базы данных сигнатур атак.

Методы обнаружения аномальных отклонений предназначены для обнаружения неизвестных атак. Принцип их действия состоит в том, что выявляется аномальное поведение ИС отличное от типичного и на основании этого факта принимается решение о возможном наличии атаки. Обнаружение аномальных отклонений в сети осуществляется по признакам компьютерных атак, таким как редкие типы стеков протоколов (интерфейсов) для запроса информации, длинные пакеты данных, пакеты с редкими распределениями символов, нестандартная форма запроса к массиву данных.

Для применения методов обнаружения аномальных отклонений и уменьшения числа ложных срабатываний необходимы четкие знания о регламентах обработки данных и требованиях к обеспечению безопасности информации (установленном порядке администрирования), обновлениях контролируемых программ, сведения о технологических шаблонах выполнения ТЦУ в ИС. Способы применения методов обнаружения аномальных отклонений различаются используемыми математическими моделями :

· Статистическими моделями:

− вероятностными моделями;

− моделями кластерного анализа.

· Моделями конечных автоматов.

· Марковскими моделями.

· Моделями на основе нейронных сетей.

· Моделями на основе генной инженерии.

В методе обнаружения аномальных отклонений, в котором используются статистические модели, выявление аномальной активности осуществляется посредством сравнения текущей активности сетевого трафика ИС с заданными требованиями к технологическому шаблону (профилю нормального поведения) выполнения ТЦУ ИС.

В качестве основного показателя в вероятностных моделях обнаружения компьютерных атак используется:

− вероятность появления новой формы пакета передачи данных отличной от эталонной;

− математическое ожидание и дисперсия случайных величин, характеризующих изменение IP-адресов источника и потребителя информации, номеров портов АРМ источников и потребителей информации.

Статистические методы дают хорошие результаты на малом подмножестве компьютерных атак из всего множества возможных атак. Недостаток статистических моделей обнаружения аномальных отклонений состоит в том, что они не позволяют оценить объем передаваемых данных и не способны обнаружить вторжения атак с искаженными данными. Узким местом методов является возможность переполнения буфера пороговых проверок «спамом» ложных сообщений.

Для эффективного использования статистических моделей в методе обнаружения аномальных отклонений необходимы строго заданные решающие правила и проверка ключевых слов (порогов срабатывания) на различных уровнях протоколов передачи данных. В противном случае доля ложных срабатываний, по некоторым оценкам, составляет около 40 % от общего числа обнаруженных атак.

В основе моделей кластерного анализа лежит построение профиля нормальных активностей (например, кластера нормального трафика) и оценка отклонений от этого профиля посредством выбранных критериев, признаков (классификатора главных компонентов) компьютерных атак и вычислении расстояний между кластерами на множестве признаков атак. В моделях кластерного анализа используется двухэтапный алгоритм обнаружения компьютерных атак. На первом этапе осуществляется сбор информации для формирования множества данных кластеров аномального поведения ИС на низших уровнях протоколов передачи данных. На втором этапе выполняется сравнительный анализ полученных кластеров аномального поведения ИС с кластерами описания штатного поведения системы. Вероятность распознавания атак моделями кластерного анализа составляет в среднем 0,9 при обнаружении вторжений только по заголовкам пакетов передачи данных без семантического анализа информационной составляющей пакетов. Для получения достоверных данных с использованием моделей кластерного анализа необходим анализ порядка идентификации и аутентификации, регистрации абонентов, системных прерываний, доступа к вычислительным ресурсам в нескольких системных журналах ИС: аудита, регистрации, ресурсов, что приводит к задержке времени на принятие решений. Такая задержка часто делает невозможным применение моделей кластерного анализа в системах квазиреального масштаба времени.

Обнаружение атак с использованием модели конечных автоматов основано на моделировании конечными автоматами процессов информационного взаимодействия абонентов ИС по протоколам передачи данных. Конечный автомат описывается множествами входных данных, выходных данных и внутренних состояний. Атаки фиксируются по «аномальным» переходам ИС из состояния в состояние. Предполагается, что в ИС «штатные» переходы системы из состояния в состояние определены, а неизвестные состояния и переходы в эти состояния регистрируются как аномальные. Достоинством этой модели является упрощенный подбор классификационных признаков для ИС и рассмотрение малого числа переходов из состояния в состояние. Модель позволяет обнаруживать атаки в потоке обработки данных сетевыми протоколами в режиме близком к реальному масштабу времени. К недостаткам модели следует отнести необходимость разработки большого числа сложных экспертных правил для сравнительного анализа требуемых и аномальных состояний и переходов системы. Экспертные правила оценки состояний ИС взаимоувязаны с характеристиками сетевых протоколов передачи данных.

Методы обнаружения аномальных отклонений на основе марковских моделей основаны на формировании марковской цепи нормально функционирующей системы и функции распределения вероятностей перехода из одного состояния в другое. Эти сведения используются как обучающие данные. Обнаружение аномалий осуществляется посредством сравнения марковских цепей и соответствующих функций распределения вероятностей аномального и нормального функционирования ИС по значениям порога вероятностей наступления событий. На практике эта модель наиболее эффективна для обнаружения компьютерных атак, основанных на системных вызовах операционной системы, и требует дополнительных метрик условной энтропии для использования в системах квазиреального масштаба времени.

Методы обнаружения компьютерных атак на основе нейронных сетей применяют для предварительной классификации аномалий в ИС. Они базируются на идентификации нормального поведения системы по функции распределения получения пакетов данных (выполнения заданных команд оператора), обучении нейронной сети и сравнительного анализа событий по обучающей выборке.

Аномальное отклонение в ИС обнаруживается тогда, когда степень доверия нейросети своему решению лежит ниже заданного порога. Предполагается, что применению модели нейронных сетей для реализации механизмов защиты информации ИС от компьютерных атак предшествует обучение этих сетей заданным алгоритмам нормального функционирования. Недостатками методов обнаружения компьютерных атак с использованием нейронной сети являются сложный математический аппарат, который недостаточно эффективно работает в системах квазиреального масштаба времени, и сложность обучения сети для выявления неизвестных атак.

Модели обнаружения компьютерных атак на основе генной инженерии опираются на применение в сфере информационных технологий достижений генетики и моделей иммунной системы человека. Подход этой модели базируется на моделировании элементов иммунной системы человека в средствах обнаружения аномалий путем представления данных о технологических процессах в ИС цепочкой (вектором) признаков, и затем вычисления меры сходства между обучающей цепочкой признаков, характеризующих нормальное «поведение» ИС и тестовой цепочкой, характеризующей аномальное функционирование. Если согласование между данными обучающей и тестовой цепочек не найдено, то процесс интерпретируется как аномальный. Одна из основных трудностей применения этой модели состоит в выборе порога согласования данных, формирования необходимого объема данных обучающей и тестовой выборки и чувствительности к ложным срабатываниям.

Модель на основе генной инженерии (природной иммунной системы), применяется для обнаружения аномальных соединений по протоколу ТСР/IP по данным об IP-адресах: источника информации, потребителя информации и коммуникационных средств, с помощью которой соединяются абоненты в сети. Недостаток этих моделей заключается в том, что требуется сложная процедура настройки обучающей и тестовой выборок или данных о поведении индивидуума в ИС с привлечением высококвалифицированного оператора.

Таким образом, достоинством методов обнаружения аномальных отклонений является возможность анализа динамических процессов функционирования ИС и выявления в них новых типов компьютерных атак. Методы дают возможность априорного распознавания аномалий путем систематического сканирования уязвимых мест.

К недостаткам этих методов можно отнести необходимость увеличения нагрузки на трафик в сети, сложность реализации и более низкая достоверность обнаружения компьютерных атак в сравнении с сигнатурным анализом.

Ограничением методов обнаружения и анализа компьютерных атак является необходимость детальной информации о применении протоколов (стеков протоколов) передачи данных в ИС на всех уровнях эталонной модели взаимодействия открытых систем.

Сравнительный анализ существующих методов обнаружения компьютерных атак по анализу сигнатур и аномальных отклонений в ИС показал, что наиболее универсальным подходом к выявлению известных и неизвестных атак является метод обнаружения аномалий. Для повышения устойчивости функционирования ИС необходим комбинированный метод противодействия компьютерным атакам, который гибко использует элементы сигнатурного анализа, выявления аномалий и функционального анализа динамически выполняемых функций ИС.

Список литературы

1. Бетелин В.Б., Галатенко В.А. Основы информационной безопасности: курс лекций: учебное пособие Издание третье, 2006 г., 208 с.

2. Бурков В.Н., Грацианский Е.В., Дзюбко С.И., Щепкин А.В. Модели и механизмы управления безопасностью. Серия «Безопасность». - СИНТЕГ, 2001 г., 160 с.

3. ГОСТ Р ИСО/МЭК 27033-3 - 2014 Информационная технология Методы и средства обеспечения безопасности. Безопасность сетей. Часть 3 Эталонные сетевые сценарии. Угрозы, методы проектирования и вопросы управления.

4. Девянин П.Н. Модели безопасности компьютерных систем. Издательский центр «Академия», 2005 г., 144 с.

5. Климов С.М., Сычев М.П., Астрахов А.В. Противодействие компьютерным атакам. Методические основы. Электронное учебное издание. - М.:МГТУ имени Н.Э. Баумана, 2013 г., 108 с.

6. Шаньгин В.Ф. Защита информации в компьютерных системах и сетях. ДМК Пресс, 2012 г., 591 с.

7. http://sagmu.ru/nauka/images/stories/vestnik/full_text/2013_2/balanovskaya_7-17 - "Анализ угроз информационной безопасности деятельности промышленных предприятий", Балановская А.В., 2013 г.

Исследования проблем обеспечения информационной безопасности и методов предотвращения нарушений в этой области обозначили необходимость более глубоко разобраться в вопросах информационных конфликтов, часто приводящих к более серьезным последствиям, чем просто фиксация очевидного конфликта и ожидание его затухания или перерастания в правонарушение.

"Конфликт в переводе с латинского, – говорит профессор Т. А. Полякова, – это столкновение противоположно направленных целей, интересов, позиций, мнений или взглядов оппонентов или субъектов взаимодействия". Такие противоречия при построении информационного общества неизбежны, многообразны и всеобъемлющи .

Рассматривая конфликты как объективированную в отношениях субъектов форму противоречий, мы обратили внимание на то, что конфликты возникают как в области социальной сферы, так и в системе информатизации, в информационной инфраструктуре. Они могут быть но значимости и отрицательными относительно решаемых обществом задач, и позитивными, наталкивая ответственных субъектов на поиск новых или более совершенных решений. Конфликт может выполнять роль мотива правонарушения, если он не учтен в процессе его выявления. Чаще всего конфликты проявляются в самом законодательстве в силу его слабой согласованности и недостаточно тщательной подготовленности проектов нормативных актов, а также упущений в процессах правоприменения и исполнения законодательных актов.

Весьма существенны конфликты в области правотворчества в условиях культурного разнообразия и игнорирования исторических факторов при реализации установленных правил, непонимания баланса и согласованности действий в области отношений органов государственной власти и местного самоуправления, юридических лид и граждан. Конфликты возникают по причинам несоблюдения правил работы с информационными технологиями, информационными ресурсами, невыполнения требований к системам коммуникаций. Способы разрешения конфликтов различны и зависят от причин и области их возникновения. Они могут быть погашены в административном, служебном порядке, путем мирного взаимодействия сторон, но могут быть доведены и до судебного рассмотрения. В любом случае наличие конфликта, выявленного и зафиксированного, является условием предотвращения более серьезных ситуаций. Можно сказать, что за каждой формой нарушения правил обеспечения информационной безопасности скрыты выявленные или невыявленные конфликты объективного или субъективного характера. В этой связи в 2008 г. в ИГП РАН был проведен теоретический семинар на тему "Конфликты в информационной сфере", материалы которого опубликованы в одноименном сборнике статей и выступлений его участников.

Не все виды конфликтов перерастают в правонарушения или тем более в преступления.

С учетом значимости конфликта в рассматриаемой области общественных отношений важно сформулировать понятие юридически значимого конфликта в информационной среде (сфере) следующим образом. Юридически значимым конфликтом является создание ситуации нестабильности в реализации законных прав и интересов граждан, государства, общества, отдельных организаций в их информационной среде, ситуации, снижающей уровень обеспечения безопасности, в том числе ведущей к созданию угроз, рисков и разрушений в самой информационной инфраструктуре или в области прав субъектов – участников информационных отношений и процессов. И это было освещено в предыдущих главах учебника, а также в работах С. И. Семилетова. Отметим, что конфликты ведут к подрыву значимости информации в процессе развития информационного, гражданского, демократического, социального, устойчивого правового и гуманного общества

дипломная работа

1.3.4 Основные понятия безопасности компьютерных систем

Под безопасностью информации понимается состояние защищенности информации, обрабатываемой средствами вычислительной техники или автоматизированной системы, от внутренних или внешних угроз.

Под целостностью понимается как способность средств вычислительной техники или автоматизированной системы обеспечивать неизменность вида и качества информации в условиях случайного искажения или угрозы разрушения. Согласно руководящему документу Гостехкомиссии России “Защита от несанкционированного доступа к информации. Термины и определения” угрозы безопасности и целостности состоят в потенциально возможных воздействиях на вычислительную систему, которые прямо или косвенно могут нанести ущерб безопасности и целостности информации, обрабатываемой системой.

Ущерб целостности информации состоит в ее изменении, приводящем к нарушению ее вида или качества.

Ущерб безопасности подразумевает нарушение состояния защищенности содержащейся в вычислительной системе информации путем осуществления несанкционированного доступа к объектам вычислительной системы.

Несанкционированный доступ определяется как доступ к информации, нарушающий правила разграничения доступа с использованием штатных средств, предоставляемых вычислительными системами. Можно ввести более простое определение несанкционированному доступу: несанкционированный доступ заключается в получении пользователем или программой доступа к объекту, разрешение на который в соответствии с принятой в системе политикой безопасности отсутствует.

Реализация угрозы называется атакой. Человек, стремящийся реализовать угрозу, называется нарушителем, или злоумышленником.
Существует множество классификаций видов угроз по принципам и характеру их воздействия на систему, по используемым средствам, по целям атаки и т.д. Рассмотрим общую классификацию угроз безопасности вычислительных систем по средствам воздействия на них. С этой точки зрения все угрозы могут быть отнесены к одному из следующих классов (Рисунок 1.4):

1. Вмешательство человека в работу вычислительной системы. К этому классу относятся организационные средства нарушения безопасности вычислительных систем (кража носителей информации, несанкционированный доступ к устройствам хранения и обработки информации, порча оборудования) и осуществление нарушителем несанкционированного доступа к программным компонентам вычислительной системы (все способы несанкционированного проникновения в вычислительные системы, а также способы получения пользователем-нарушителем незаконных прав доступа к компонентам вычислительной системы). Меры, противостоящие таким угрозам, носят организационный характер (охрана, режим доступа к устройствам вычислительной системы), также включают в себя совершенствование систем разграничения доступа и системы обнаружения попыток атак (попыток подбора паролей).

2. Аппаратно-техническое вмешательство в работу вычислительной системы. Это нарушения безопасности и целостности информации в вычислительной системе с помощью технических средств, например, получение информации по электромагнитному излучению устройств вычислительной системы, электромагнитные воздействия на каналы передачи информации и другие методы. Защита от таких угроз, кроме организационных мер, предусматривает соответствующие аппаратные (экранирование излучений аппаратуры, защита каналов передачи информации от прослушивания) и программные меры (шифрация сообщений в каналах связи).

3. Разрушающее воздействие на программные компоненты вычислительной системы с помощью программных средств. Такие средства называются разрушающими программными средствами . К ним относятся компьютерные вирусы, троянские кони (или «закладки»), средства проникновения в удаленные системы с использованием локальных и глобальных сетей. Средства борьбы с подобными атаками состоят из программно и аппаратно реализованных систем защиты.

Автоматизация расчетов по оплате труда на примере ОАО "Нечкинское" Сарапульского района Удмуртской Республики с использованием программы 1С:Предприятие 8.0

Экономическая информационная система (ЭИС) представляет собой совокупность организационных, технических, программных и информационных средств, объединенных в единую систему с целью сбора, хранения, обработки и выдачи необходимой информации...

Безопасность информационных систем

Чтобы разработать систему защиты, необходимо, прежде всего, определить, что такое "угроза безопасности информации", выявить возможные каналы утечки информации и пути несанкционированного доступа к защищаемым данным...

Вирусы и способы их распространения

Компьютерным вирусом называется специально написанная программа, способная самопроизвольно присоединяться к другим программам, создавать свои копии и внедрять их в файлы...

Защита информации в автоматизированных системах обработки данных: развитие, итоги, перспективы

Начиная с 1999 года специалисты по компьютерным технологиям пытаются обратить внимание общественности и государственных органов на новый международный стандарт ISO/IEC 15408 «Единые критерии оценки безопасности информационных технологий» и...

Информационно-развлекательный интернет-сайт для Шахтинской Открытой Лиги КВН "Шаолинь"

Слово “безопасность” латинского происхождения - secure (securus). Затем в английском языке оно получило написание “security”. Общеизвестно, что “безопасность” - это отсутствие опасности; состояние деятельности...

Информационно-развлекательный сайт Шахтинской Открытой Лиги КВН "Шаолинь"

Слово "безопасность” латинского происхождения - secure (securus). Затем в английском языке оно получило написание "security”. Общеизвестно, что "безопасность” - это отсутствие опасности; состояние деятельности...

Назначение, эволюция и классификация операционных систем

Обязательный набор программ безопасности на персональном компьютере

Для того чтобы рассматривать в дальнейшем вопросы безопасности, необходимо ввести основные понятия, которыми оперирует теория компьютерной безопасности. Итак...

Программа для решения линейных уравнений

В самом общем случае система линейных уравнений имеет следующий вид: a11x1 + a12x2 + …+ a1n xn = b1 ; a21x1 + a22x2 + …+ a2n xn = b2 ; am1x1+ am2x2 + …+ amnxn = bm ; где х1, х2, …, хn - неизвестные, значения которых подлежат нахождению. Как видно из структуры системы...

Разработка базы данных

Система баз данных - это компьютеризированная система хранения записей, т.е. компьютеризированная система, основное назначение которой - хранить информацию, предоставляя пользователям средства её извлечения и модификации ...

Разработка информационной системы производства и реализации продукции на примере ТОО "Мебель–Комп"

Товарно-материальный запас - это запас какого-либо ресурса или предметов, используемых в организации. С точки зрения практики проблема управления запасами является чрезвычайно серьезной. Потери...

Разработка обучающей системы по дисциплине "Экспертные системы"

Обучающие системы могут использоваться при организованном образовании и при самообразовании. Под организованным образованием понимается учебный процесс в учебных заведениях разных уровней образования...

Разработка проекта защиты локальной вычислительной сети внутри организации ТОО "1С: Франчайзинг Караганда"

Под безопасностью информации понимается состояние защищенности информации, обрабатываемой средствами вычислительной техники или автоматизированной системы, от внутренних или внешних угроз...

Способы и методы защиты информационных ресурсов

Современные методы обработки, передачи и накопления информации способствовали появлению угроз, связанных с возможностью потери, искажения и раскрытия данных...

Сущность информационных технологий

Сегодня обработка экономической информации стала самостоятельным научно-техническим направлением с большим разнообразием идей и методов. Отдельные компоненты процесса обработки достигли высокой степени организации и взаимосвязи...

Классификация источников угроз

Классификация угроз информационной безопасности

Тема 2 - Угрозы информационной безопасности

Понятия угрозы безопасности объекта и уязвимости объекта были введены ранее. Для полного представления взаимодействия угрозы и объекта защиты введем понятия источника угрозы и атаки.

Угроза безопасности объекта - возможное воздействие на объект, которое прямо или косвенно может нанести ущерб его безопасности.

Источник угрозы - это потенциальные антропогенные , техногенные или стихийные носители угрозы безопасности.

Уязвимость объекта - это присущие объекту причины, приводящие к нарушению безопасности информации на объекте.

Атака - это возможные последствия реализации угрозы при взаимодействии источника угрозы через имеющиеся уязвимости. Атака - это всегда пара «источник - уязвимость», реализующая угрозу и приводящая к ущербу.

Рисунок 2.1

Предположим , студент ходит на учебу каждый день и при этом пересекает проезжую часть в неположенном месте. И однажды он попадает под машину, что причиняет ему ущерб, при котором он теряет трудоспособность и не может посещать занятия. Проанализируем данную ситуацию. Последствия в данном случае - это убытки, которые студент понес в результате несчастного случая. Угрозой у нас выступает автомобиль, который сбил студента. Уязвимостью явилось то, что студент пересекал проезжую часть в неустановленном месте. А источником угрозы в данной ситуации явилась та некая сила, которая не дала возможности водителю избежать наезда на студента.

С информацией не намного сложнее . Угроз безопасности информации не так уж и много. Угроза, как следует из определения, - это опасность причинения ущерба, то есть в этом определении проявляется жесткая связь технических проблем с юридической категорией, каковой является «ущерб».

Проявления возможного ущерба могут быть различны:

Моральный и материальный ущерб деловой репутации организации;

Моральный, физический или материальный ущерб, связанный с разглашением персональных данных отдельных лиц;

Материальный (финансовый) ущерб от разглашения защищаемой (конфиденциальной) информации;

Материальный (финансовый) ущерб от необходимости восстановления нарушенных защищаемых информационных ресурсов;

Материальный ущерб (потери) от невозможности выполнения взятых на себя обязательств перед третьей стороной;

Моральный и материальный ущерб от дезорганизации деятельности организации;

Материальный и моральный ущерб от нарушения международных отношений.

Угрозами безопасности информации являются нарушения при обеспечении:


2. Доступности;

3. Целостности.

Конфиденциальность информации - это свойство информации быть известной только аутентифицированным законным ее владельцам или пользователям.

Нарушения при обеспечении конфиденциальности:

Хищение (копирование) информации и средств ее обработки;

Утрата (неумышленная потеря, утечка) информации и средств ее обработки.

Доступность информации - это свойство информации быть доступной для аутентифицированных законных ее владельцев или пользователей.

Нарушения при обеспечении доступности:

Блокирование информации;

Уничтожение информации и средств ее обработки.

Целостность информации - это свойство информации быть неизменной в семантическом смысле при воздействии на нее случайных или преднамеренных искажений или разрушающих воздействий.

Нарушения при обеспечении целостности:

Модификация (искажение) информации;

Отрицание подлинности информации;

Навязывание ложной информации.

Носителями угроз безопасности информации являются источники угроз. В качестве источников угроз могут выступать как субъекты (личность), так и объективные проявления. Причем, источники угроз могут находиться как внутри защищаемой организации - внутренние источники, так и вне ее - внешние ис-точники.

Все источники угроз безопасности информации можно разделить на три основные группы:

1 Обусловленные действиями субъекта (антропогенные источники угроз).

2 Обусловленные техническими средствами (техногенные источники угрозы).

3 Обусловленные стихийными источниками.

Антропогенными источниками угроз безопасности информации выступают субъекты, действия которых могут быть квалифицированы как умышленные или случайные преступления. Только в этом случае можно говорит о причинении ущерба. Эта группа наиболее обширна и представляет наибольший интерес с точки зрения организации защиты, так как действия субъекта всегда можно оценить, спрогнозировать и принять адекватные меры. Методы противодействия в этом случае управляемы и напрямую зависят от воли организаторов защиты информации.

В качестве антропогенного источника угроз можно рассматривать субъекта, имеющего доступ (санкционированный или несанкционированный) к работе со штатными средствами защищаемого объекта. Субъекты (источники), действия которых могут привести к нарушению безопасности информации, могут быть как внешние, так и внутренние. Внешние источники могут быть случайными или пред-намеренными и иметь разный уровень квалификации.

Внутренние субъекты (источники), как правило, представляют собой высококвалифицированных специалистов в области разработки и эксплуатации программного обеспечения и технических средств, знакомы со спецификой решаемых задач, структурой и основными функциями и принципами работы программно-аппаратных средств защиты информации, имеют возможность использования штатного оборудования и технических средств сети.

Необходимо учитывать также, что особую группу внутренних антропогенных источников составляют лица с нарушенной психикой и специально внедренные и завербованные агенты, которые могут быть из числа основного, вспомогательного и технического персонала, а также представителей службы защиты информации. Данная группа рассматривается в составе перечисленных выше источников угроз, но методы парирования угрозам для этой группы могут иметь свои отличия.

Вторая группа содержит источники угроз, определяемые технократической деятельностью человека и развитием цивилизации. Однако последствия, вызванные такой деятельностью, вышли из-под контроля человека и существуют сами но себе. Данный класс источников угроз безопасности информации особенно актуален в современных условиях, так как в сложившихся условиях эксперты ожидают резкого роста числа техногенных катастроф, вызванных физическим и моральным устареванием используемого оборудования, а также отсутствием материальных средств на его обновление. Технические средства, являющиеся источниками потенциальных угроз безопасности информации, также могут быть внешними и внутренними.

Третья группа источников угроз объединяет обстоятельства, составляющие непреодолимую силу, то есть такие обстоятельства, которые носят объективный и абсолютный характер, распространяющийся на всех. К непреодолимой силе в законодательстве и договорной практике относят стихийные бедствия или иные обстоятельства, которые невозможно предусмотреть или предотвратить или возможно предусмотреть, но невозможно предотвратить при современном уровне че-ловеческого знания и возможностей. Такие источники угроз совершенно не поддаются прогнозированию, и поэтому меры защиты от них должны применяться всегда.

Стихийные источники потенциальных угроз информационной безопасности, как правило, являются внешними по отношению к защищаемому объекту и под ними понимаются, прежде всего, природные катаклизмы.

Классификация и перечень источников угроз приведены в таблице 2.1.

Таблица 2.1 - Классификация и перечень источников угроз информационной безопасности

Антропогенные источники Внешние Криминальные структуры
Потенциальные преступники и хакеры
Недобросовестные партнеры
Технический персонал поставщиков телекоммуникационных услуг
Представители надзорных организаций и аварийных служб
Представители силовых структур
Внутренние Основной персонал (пользователи, программисты, разработчики)
Представители службы защиты информации (администраторы)
Вспомогательный персонал (уборщики, охрана)
Технический персонал (жизнеобеспечение, эксплуатация)
Техногенные источники Внешние Средства связи
Сети инженерных коммуникации (водоснабжения, канализации)
Транспорт
Внутренние Некачественные технические средства обработки информации
Некачественные программные средства обработки информации
Вспомогательные средства (охраны, сигнализации, телефонии)
Другие технические средства, применяемые в учреждении
Стихийные источники Внешние Пожары
Землетрясения
Наводнения
Ураганы
Магнитные бури
Радиоактивное излучение
Различные непредвиденные обстоятельства
Необъяснимые явления
Другие форс-мажорные обстоятельства

Все источники угроз имеют разную степень опасности К опуг, которую можно количественно оценить, проведя их ранжирование. При этом оценка степени опасности проводится по косвенным показателям.

В качестве критериев сравнения (показателей) можно выбрать:

Возможность возникновения источника K 1 - определяет степень доступности к возможности использовать уязвимость для антропогенных источников, удаленность от уязвимости для техногенных источников или особенности обстановки для случайных источников;

Готовность источника К 2 - определяет степень квалификации и привлекательность совершения деяний со стороны источника угрозы для антропогенных источников или наличие необходимых условий для техногенных и стихийных источников;

Фатальность К 3 - определяет степень неустранимости последствий реализации угрозы.

Каждый показатель оценивается экспертно-аналитическим методом по пятибалльной системе. Причем, 1 соответствует самой минимальной степени влияния оцениваемого показателя на опасность использования источника, а 5 - максимальной.

К опуг для отдельного источника можно определить как отношение произведения вышеприведенных показателей к максимальному значению (125):

Угрозы , как возможные опасности совершения какого-либо действия, направленного против объекта защиты, проявляются не сами по себе, а через уязвимости, приводящие к нарушению безопасности информации на конкретном объекте информатизации.

Уязвимости присущи объекту информатизации, неотделимы от него и обусловливаются недостатками процесса функционирования, свойствами архитектуры автоматизированных систем, протоколами обмена и интерфейсами, применяемыми программным обеспечением и аппаратной платформой, условиями эксплуатации и расположения.

Источники угроз могут использовать уязвимости для нарушения безопасности информации, получения незаконной выгоды (нанесения ущерба собственнику, владельцу, пользователю информации). Кроме того, возможны не злонамеренные действия источников угроз по активизации тех или иных уязвимостей, наносящих вред.

Каждой угрозе могут быть сопоставлены различные уязвимости. Устранение или существенное ослабление уязвимостей влияет на возможность реализации угроз безопасности информации.

Уязвимости безопасности информации могут быть:

Объективными;

Субъективными;

Случайными.

Объективные уязвимости зависят от особенностей построения и технических характеристик оборудования, применяемого на защищаемом объекте. Полное устранение этих уязвимостей невозможно, но они могут существенно ослабляться техническими и инженерно-техническими методами парирования угроз безопасности информации.

Субъективные уязвимости зависят от действий сотрудников и, в основном устраняются организационными и программно-аппаратными методами.

Случайные уязвимости зависят от особенностей окружающей защищаемый объект среды и непредвиденных обстоятельств. Эти факторы, как правило, мало предсказуемы и их устранение возможно только при проведении комплекса организационных и инженерно-технических мероприятий по противодействию, угрозам информационной безопасности.

Классификация и перечень уязвимостей информационной безопасности приведены в таблице 2.2.

Таблица 2.2 - Классификация и перечень уязвимостей информационной безопасности

Объективные уязвимости Сопутствующие техническим средствам излучения Электромагнитные Побочные излучения элементов технических средств
Кабельных линий технических средств
Излучения на частотах работы генераторов
На частотах самовозбуждения усилителей
Электрические Наводки электромагнитных излучений на линии и проводники
Просачивание сигналов в цепи электропитания, в цепи заземления
Неравномерность потребления тока электропитания
Звуковые Акустические
Виброакустические
Активизируемые Аппаратные закладки устанавливаемые В телефонные линии
В сети электропитания
В помещениях
В технических средствах
Программные закладки Вредоносные программы
Технологические выходы из программ
Нелегальные копии ПО
Определяемые особенностями элементов Элементы, обладающие электроакустическими преобразованиями Телефонные аппараты
Громкоговорители и микрофоны
Катушки индуктивности
Дроссели
Трансформаторы и пр.
Элементы, подверженные воздействию электромагнитного поля Магнитные носители
Микросхемы
Нелинейные элементы, подверженные ВЧ навязыванию
Определяемые особенностями защищаемого объекта Местоположением объекта Отсутствие контролируемой зоны
Наличие прямой видимости объектов
Удаленных и мобильных элементов объекта
Вибрирующих отражающих поверхностей
Организацией каналов обмена информацией Использование радиоканалов
Глобальных информационных сетей
Арендуемых каналов
Субъективные уязвимости Ошибки (халатность) При подготовке и использовании программного обеспечения При разработке алгоритмов и программного обеспечения
При инсталляции и загрузке программного обеспечения
При эксплуатации программного обеспечения
При вводе данных (информации)
При настройке сервисов универсальных систем
Самообучающейся (самонастраивающейся) сложной системы систем
При эксплуатации технических средств При включении/выключении технических средств
При использовании технических средств охраны
Некомпетентные действия При конфигурировании и управлении сложной системы
При настройке программного обеспечения
При организации управления потоками обмена информации
При настройке технических средств
При настройке штатных средств защиты программного обеспечения
Неумышленные действия Повреждение (удаление) программного обеспечения
Повреждение (удаление) данных
Повреждение (уничтожение) носителей информации
Повреждение каналов связи
Нарушения Режима охраны и защиты Доступа на объект
Доступа к техническим средствам
Соблюдения конфиденциальности
Режима эксплуатации технических средств и ПО Энергообеспечения
Жизнеобеспечения
Установки нештатного оборудования
Инсталляции нештатного ПО (игрового, обучающего, технологического)
Использования информации Обработки и обмена информацией
Хранения и уничтожения носителей информации
Уничтожения производственных отходов и брака
Психогенные Психологические Антагонистические отношения (зависть, озлобленность, обида)
Неудовлетворенность своим положением
Неудовлетворенность действиями руководства (взыскание, увольнение)
Психологическая несовместимость
Психические Психические отклонения
Стрессовые ситуации
Физиологические Физическое состояние (усталость, болезненное состояние)
Психосоматическое состояние
Случайные уязвимости Сбои и отказы Отказы и неисправности технических средств Обрабатывающих информацию
Обеспечивающих работоспособность средств обработки информации
Обеспечивающих охрану и контроль доступа
Старение и размагничивание носителей информации Дискет и съемных носителей
Жестких дисков
Элементов микросхем
Кабелей и соединительных линий
Сбои программного обеспечения Операционных систем и СУБД
Прикладных программ
Сервисных программ
Антивирусных программ
Сбои электроснабжения Оборудования, обрабатывающего информацию
Обеспечивающего и вспомогательного оборудования

Все уязвимости имеют разную степень опасности K опуяз, которую можно количественно оценить, проведя их ранжирование.

При этом в качестве критериев сравнения можно выбрать:

Фатальность K 4 - определяет степень влияния уязвимости на неустранимость последствий реализации угрозы;

Доступность K 5 - определяет возможность использования уязвимости источником угроз;

Количество K 6 - определяет количество элементов объекта, которым характерен та или иная уязвимость.

K опуяз для отдельной уязвимости можно определить как отношение произведения вышеприведенных показателей к максимальному значению (125):

Модель нарушителя информационной безопасности - это набор предположений об одном или нескольких возможных нарушителях информационной безопасности, их квалификации, их технических и материальных средствах и т. д.

Правильно разработанная модель нарушителя является гарантией построения адекватной системы обеспечения информационной безопасности. Опираясь на построенную модель, уже можно строить адекватную систему информационной защиты.

Чаще всего строится неформальная модель нарушителя, отражающая причины и мотивы действий, его возможности, априорные знания, преследуемые цели, их приоритетность для нарушителя, основные пути достижения поставленных целей: способы реализации исходящих от него угроз, место и характер действия, возможная тактика и т. п. Для достижения поставленных целей нарушитель должен приложить определенные усилия и затратить некоторые ресурсы.

Определив основные причины нарушений, представляется возможным оказать на них влияние или необходимым образом скорректировать требования к системе защиты от данного типа угроз. При анализе нарушений защиты необходимо уделять внимание субъекту (личности) нарушителя. Устранение причин или мотивов, побудивших к нарушению, в дальнейшем может помочь избежать повторения подобного случая.

Модель может быть не одна, целесообразно построить несколько отличающихся моделей разных типов нарушителей информационной безопасности объекта защиты.

Для построения модели нарушителя используется информация, полученная от служб безопасности и аналитических групп, данные о существующих средствах доступа к информации и ее обработки, о возможных способах перехвата данных на стадиях их передачи, обработки и хранении, об обстановке в коллективе и на объекте защиты, сведения о конкурентах и ситуации на рынке, об имевших место свершившихся случаях нарушения информационной безопасности и т. п.

Кроме этого оцениваются реальные оперативные технические возможности злоумышленника для воздействия на систему защиты или на защищаемый объект. Под техническими возможностями подразумевается перечень различных технических средств, которыми может располагать нарушитель в процессе совершения действий, направленных против системы информационной защиты.

Нарушители бывают внутренними и внешними.

Среди внутренних нарушителей в первую очередь можно выделить:

Непосредственных пользователей и операторов информационной системы, в том числе руководителей различных уровней;

Администраторов вычислительных сетей и информационной безопасности;

Прикладных и системных программистов;

Сотрудников службы безопасности;

Технический персонал по обслуживанию зданий и вычислительной техники, от уборщицы до сервисного инженера;

Вспомогательный персонал и временных работников.

Среди причин, побуждающих сотрудников к неправомерным действиям, можно указать следующие:

Безответственность;

Ошибки пользователей и администраторов;

Демонстрацию своего превосходства (самоутверждение);

- «борьбу с системой»;

Корыстные интересы пользователей системы;

Недостатки используемых информационных технологий.

Группу внешних нарушителей могут составлять:

Клиенты;

Приглашенные посетители;

Представители конкурирующих организаций;

Сотрудники органов ведомственного надзора и управления;

Нарушители пропускного режима;

Наблюдатели за пределами охраняемой территории.

Помимо этого классификацию можно проводить по следующим параметрам.

Используемые методы и средства:

Сбор информации и данных;

Пассивные средства перехвата;

Использование средств, входящих в информационную систему или систему ее защиты, и их недостатков;

Активное отслеживание модификаций существующих средств обработки информации, подключение новых средств, использование специализированных утилит, внедрение программных закладок и «черных ходов» в систему, подключение к каналам передачи данных.

Уровень знаний нарушителя относительно организации информационной структуры:

Типовые знания о методах построения вычислительных систем, сетевых протоколов, использование стандартного набора программ;

Высокий уровень знаний сетевых технологий, опыт работы со специализированными программными продуктами и утилитами;

Высокие знания в области программирования, системного проектирования и эксплуатации вычислительных систем;

Обладание сведениями о средствах и механизмах защиты атакуемой системы;

Нарушитель являлся разработчиком или принимал участие в реализации системы обеспечения информационной безопасности.

Время информационного воздействия:

В момент обработки информации;

В момент передачи данных;

В процессе хранения данных (учитывая рабочее и нерабочее состояния системы).

По месту осуществления воздействия:

Удаленно с использованием перехвата информации, передающейся по каналам передачи данных, или без ее использования;

Доступ на охраняемую территорию;

Непосредственный физический контакт с вычислительной техникой, при этом можно выделить: доступ к рабочим станциям, доступ к серверам предприятия, доступ к системам администрирования, контроля и управления информационной системой, доступ к программам управления системы обеспечения информационной безопасности.

В таблице 2.3 приведены примеры моделей нарушителей информационной безопасности и их сравнительная характеристика.

Таблица 2.3 - Сравнительная характеристика нескольких моделей нарушителя

Характеристика Хакер-одиночка Группа хакеров Конкуренты Госструктуры, спецподразделения
Вычислительная мощность технических средств Персональный компьютер ЛВС, использование чужих вычислительных сетей Мощные вычислительные сети Неограниченная вычислительная мощность
Доступ к интернету, тип каналов доступа Модем или выделенная линия Использование чужих каналов с высокой пропускной способностью Собственные каналы с высокой пропускной способностью Самостоятельный контроль над маршрутизацией трафика в Интернете
Финансовые возможности Сильно ограничены Ограничены Большие возможности Практически неограниченные
Уровень знаний в области IT Невысокий Высокий Высокий Высокий, разработчики стандартов
Используемые технологии Готовые программы, известные уязвимости Поиск новых уязвимостей, изготовление вредоносных программ Современные методы проникновения в информационные системы и воздействия на потоки данных в ней Доскональные знания информационных технологий: возможные уязвимости и недостатки
Знания о построении системы защиты объекта Недостаточные знания о построении информационной системы Могут предпринимать усилия для получения представления о принципах функционирования системы защиты Могут предпринимать усилия для получения представления о принципах функционирования системы защиты, внедрять своего представителя в службу безопасности В процессе сертификации системы представители госорганов могут получать достаточно полную информацию о ее построении
Преследуемые цели Эксперимент Внесение искажений в работу системы Блокировка функционирования системы, подрыв имиджа, разорение Непредсказуемые
Характер действий Скрытый Скрытый Скрытый или открытый демонстративный Может не утруждать себя сокрытием своих действий
Глубина проникновения Чаще всего останавливается после первого успешного воздействия До момента достижения поставленной цели или появления серьезного препятствия До победного конца Ничего не способно их остановить

Нарушение безопасности информации

Нарушение безопасности информации - событие, при котором компрометируется один или несколько аспектов безопасности информации (доступность, конфиденциальность, целостность и достоверность).

Финансовый словарь Финам .


Смотреть что такое "Нарушение безопасности информации" в других словарях:

    нарушитель безопасности информации - Физическое лицо, случайно или преднамеренно совершающее действия, следствием которых является нарушение безопасности информации при ее обработке техническими средствами в информационных системах. [Р 50.1.056 2005 ] Тематики защита информации …

    Совокупность условий и факторов, создающих потенциальную или реальную опасность, связанную с утечкой информации или несанкционированными, непреднамеренными воздействиями на нее. Основными У.б.и. могут являться: противоправные сбор и использование … Словарь черезвычайных ситуаций

    Нарушение ИБ организации Случайное или преднамеренное неправомерное действие физического лица (субъекта, объекта) в отношении активов организации, следствием которых является нарушение безопасности информации при ее обработке техническими… … Справочник технического переводчика

    нарушение информационной безопасности организации - 3.2.4 нарушение информационной безопасности организации; нарушение ИБ организации: Случайное или преднамеренное неправомерное действие физического лица (субъекта, объекта) в отношении активов организации, следствием которых является нарушение… …

    ГОСТ Р 53114-2008: Защита информации. Обеспечение информационной безопасности в организации. Основные термины и определения - Терминология ГОСТ Р 53114 2008: Защита информации. Обеспечение информационной безопасности в организации. Основные термины и определения оригинал документа: 3.1.19 автоматизированная система в защищенном исполнении; АС в защищенном исполнении:… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р ИСО/ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности - Терминология ГОСТ Р ИСО/ТО 13569 2007: Финансовые услуги. Рекомендации по информационной безопасности: 3.4 активы (asset): Все, что имеет ценность для организации . Определения термина из разных документов: активы 3.58 анализ риска (risk… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р ИСО ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности - Терминология ГОСТ Р ИСО ТО 13569 2007: Финансовые услуги. Рекомендации по информационной безопасности: 3.4 активы (asset): Все, что имеет ценность для организации . Определения термина из разных документов: активы 3.58 анализ риска (risk… … Словарь-справочник терминов нормативно-технической документации

    Базовая модель угроз безопасности персональных данных при их обработке, в информационных системах персональных данных (выписка) - Терминология Базовая модель угроз безопасности персональных данных при их обработке, в информационных системах персональных данных (выписка): Автоматизированная система система, состоящая из персонала и комплекса средств автоматизации его… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р 50922-2006: Защита информации. Основные термины и определения - Терминология ГОСТ Р 50922 2006: Защита информации. Основные термины и определения оригинал документа: 2.8.9 анализ информационного риска: Систематическое использование информации для выявления угроз безопасности информации, уязвимостей… … Словарь-справочник терминов нормативно-технической документации

    Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения должны быть пояснения … Википедия

 

 

Это интересно: