→ Все о технологии Peer-to-peer (P2P), и не только о ней (анализ). Реферат: Peer-to-peer технологии Что такое peer to peer

Все о технологии Peer-to-peer (P2P), и не только о ней (анализ). Реферат: Peer-to-peer технологии Что такое peer to peer

Peer-to-peer технологии

Выполнила:

студентка 1 курса ФМФ магистратуры

Кулаченко Надежда Сергеевна

Проверил:

Чернышенко Сергей Викторович

Москва 2011


Введение

По мере развития Интернета все больший интерес у пользователей вызывают технологии обмена файлами. Более доступная, чем раньше, Сеть и наличие широких каналов доступа позволяют значительно проще находить и закачивать нужные файлы. Не последнюю роль в этом процессе играют современные технологии и принципы построения сообществ, которые позволяют строить системы, весьма эффективные с точки зрения как организаторов, так и пользователей файлообменных сетей. Таким образом, данная тема на сегодняшний день является актуальной, т.к. постоянно появляются новые сети, а старые либо прекращают работу, либо модифицируются и улучшаются. По некоторым данным, в настоящее время в Интернете более половины всего трафика приходится на трафик файлообменных пиринговых сетей. Размеры самых крупных из них перевалили за отметку в миллион одновременно работающих узлов. Общее количество зарегистрированных участников таких файлообменных сетей во всем мире составляет порядка 100 млн.

Peer-to-peer (англ. равный равному) - древний принцип японских самураев и утопических социалистов. Он обрел настоящую популярность в конце ХХ столетия. Сейчас этот принцип используют миллионы пользователей интернета, разговаривая с друзьями из далеких стран, скачивая файлы у пользователей с которыми никогда не были знакомы.

Peer-to-peer (P2P) технологии являются одной из наиболее популярных тем на сегодняшний день. Популярность, достигнутая с помощью таких программам как Skype, Bittorrent, DirectConnect и список таких программ можно продолжать и продолжать, подтверждает потенциал peer-to-peer систем.

В данной работе я рассмотрю отдельные принципы функционирования ресурсов этой тематики, принципы функционирования популярных пиринговых сетей, активно применяемых для обмена файлами, а также проблемы их использования.


1. Napster и Gnutella - первые пиринговые сети

Первая пиринговая сеть Napster появилась в 1999 году и сразу стала известна всему Интернет-сообществу. Автором клиента был восемнадцатилетний Шон Феннинг. Napster соединил тысячи компьютеров с открытыми ресурсами. Изначально пользователи Napster обменивались mp3 файлами.

Napster позволял создать интерактивную многопользовательскую среду для некоторого специфического взаимодействия. Napster предоставляет всем подключенным к нему пользователям возможность обмениваться музыкальными файлами в формате mp3 практически напрямую: центральные серверы Napster обеспечивают возможность поиска на компьютерах всех подключенных к ним пользователей, а обмен происходит в обход центральных серверов, по схеме user-to-user. Немалая часть записей, циркулирующих в сформировавшейся вокруг Napster среде, защищена законом об авторских правах, однако распространяется бесплатно. Napster спокойно просуществовал пять месяцев, став весьма востребованным сервисом.

7 декабря Ассоциация индустрии звукозаписи Америки (RIAA) подала на компанию Napster в суд за «прямое и косвенное нарушение копирайта».

В конце концов, Napster сперва продался какой-то европейской фирме, а потом и вовсе был закрыт.

Gnutella - была создана в 2000 г программистами фирмы Nullsoft как преемница Napster. Она функционирует до сих пор, хотя из-за серьезных недостатков алгоритма пользователи в настоящее время предпочитают сеть Gnutella2. Эта сеть работает без сервера (полная децентрализация).

При подключении клиент получает от узла, с которым ему удалось соединиться, список из пяти активных узлов; им отсылается запрос на поиск ресурса по ключевому слову. Узлы ищут у себя соответствующие запросу ресурсы и, если не находят их, пересылают запрос активным узлам вверх по “дереву” (топология сети имеет структуру графа типа “дерево”), пока не найдется ресурс или не будет превышено максимальное число шагов. Такой поиск называется размножением запросов (query flooding).

Понятно, что подобная реализация ведет к экспоненциальному росту числа запросов и соответственно на верхних уровнях “дерева” может привести к отказу в обслуживании, что и наблюдалось неоднократно на практике. Разработчики усовершенствовали алгоритм, ввели правила, в соответствии с которыми запросы могут пересылать вверх по “дереву” только определенные узлы - так называемые выделенные (ultrapeers), остальные узлы (leaves) могут лишь запрашивать последние. Введена также система кеширующих узлов.

В таком виде сеть функционирует и сейчас, хотя недостатки алгоритма и слабые возможности расширяемости ведут к уменьшению ее популярности.

Недостатки протокола Gnutella инициировали разработку принципиально новых алгоритмов поиска маршрутов и ресурсов и привели к созданию группы протоколов DHT (Distributed Hash Tables) - в частности, протокола Kademlia, который сейчас широко используется в наиболее крупных сетях.

Запросы в сети Gnutella пересылаются по TCP или UDP, копирование файлов осуществляется через протокол HTTP. В последнее время появились расширения для клиентских программ, позволяющие копировать файлы по UDP, делать XML-запросы метаинформации о файлах.

В 2003 г. был создан принципиально новый протокол Gnutella2 и первые поддерживающие его клиенты, которые были обратносовместимы с клиентами Gnutella. В соответствии с ним некоторые узлы становятся концентраторами, остальные же являются обычными узлами (leaves). Каждый обычный узел имеет соединение с одним-двумя концентраторами. А концентратор связан с сотнями обычных узлов и десятками других концентраторов. Каждый узел периодически пересылает концентратору список идентификаторов ключевых слов, по которым можно найти публикуемые данным узлом ресурсы. Идентификаторы сохраняются в общей таблице на концентраторе. Когда узел “хочет” найти ресурс, он посылает запрос по ключевому слову своему концентратору, последний либо находит ресурс в своей таблице и возвращает ID узла, обладающего ресурсом, либо возвращает список других концентраторов, которые узел вновь запрашивает по очереди случайным образом. Такой поиск называется поиском с помощью метода блужданий (random walk).

Примечательной особенностью сети Gnutella2 является возможность размножения информации о файле в сети без копирования самого файла, что очень полезно с точки зрения отслеживания вирусов. Для передаваемых пакетов в сети разработан собственный формат, похожий на XML, гибко реализующий возможность наращивания функциональности сети путем добавления дополнительной служебной информации. Запросы и списки ID ключевых слов пересылаются на концентраторы по UDP.

2. P2P технологии. Принцип «клиент-клиент»

Одноранговая, децентрализованная или пиринговая (от англ. peer-to-peer, P2P - равный к равному) сеть - это оверлейная компьютерная сеть, основанная на равноправии участников. В такой сети отсутствуют выделенные серверы, а каждый узел (peer) является как клиентом, так и сервером. В отличие от архитектуры клиент-сервера, такая организация позволяет сохранять работоспособность сети при любом количестве и любом сочетании доступных узлов. Участниками сети являются пиры.

Впервые термин peer-to-peer был использован в 1984 г. компанией IBM при разработке сетевой архитектуры для динамической маршрутизации трафика через компьютерные сети с произвольной топологией (Advanced Peer to Peer Networking). В основе технологии лежит принцип децентрализации: все узлы в сети P2P равноправны, т.е. каждый узел может одновременно выступать как в роли клиента (получателя информации), так и в роли сервера (поставщика информации). «Это обеспечивает такие преимущества технологии P2P перед клиент-серверным подходом, как отказоустойчивость при потере связи с несколькими узлами сети, увеличение скорости получения данных за счет копирования одновременно из нескольких источников, возможность разделения ресурсов без “привязки” к конкретным IP-адресам, огромная мощность сети в целом и др.»[ 2]

Каждый из равноправных узлов взаимодействует напрямую лишь с некоторым подмножеством узлов сети. В случае необходимости передачи файлов между неконтактирующими напрямую узлами сети передача файлов осуществляется либо через узлы-посредники, либо по временно установленному прямому соединению (оно специально устанавливается на период передачи). В своей работе файлообменные сети используют свой собственный набор протоколов и ПО, который несовместим с протоколами FTP и HTTP и обладает важными усовершенствованиями и отличиями. Во-первых, каждый клиент такой сети, скачивая данные, позволяет подключаться к нему другим клиентам. Во-вторых, P2P-серверы (в отличие от HTTP и FTP) не хранят файлов для обмена, а их функции сводятся в основном к координации совместной работы пользователей в данной сети. Для этого они ведут своеобразную базу данных, в которой хранятся следующие сведения:

Какой IP-адрес имеет тот или иной пользователь сети;

Какие файлы размещены у какого клиента;

Какие фрагменты каких файлов где находятся;

Статистика того, кто сколько скачал себе и дал скачать другим.

Работа в типичной файлообменной сети строится следующим образом:

Клиент запрашивает в сети требуемый файл (перед этим возможно проведя поиск нужного файла по данным, хранящимся на серверах).

Если нужный файл имеется и найден, сервер отдает клиенту IP-адреса других клиентов, у которых данный файл был найден.

Клиент, запросивший файл, устанавливает «прямое» соединение с клиентом или клиентами, у которых имеется нужный файл, и начинает его скачивать (если клиент не отключен в это время от сети или не перегружен). При этом в большинстве P2P-сетей возможно скачивание одного файла сразу из нескольких источников.

Клиенты информируют сервер обо всех клиентах, которые к ним подключаются, и файлах, которые те запрашивают.

Сервер заносит в свою базу данных кто что скачал (даже если скачаны файлы не целиком).

Сети, созданные на основе технологии Peer-to-Peer, также называются пиринговыми, одноранговыми или децентрализованными. И хотя они используются сейчас в основном для разделения файлов, существует еще много других областей, где данная технология тоже успешно применяется. Это телевидение и аудиотрансляции, параллельное программирование, распределенное кэширование ресурсов для разгрузки серверов, рассылка уведомлений и статей, поддержка системы доменных имен, индексирование распределенных ресурсов и их поиск, резервное копирование и создание устойчивых распределенных хранилищ данных, обмен сообщениями, создание систем, устойчивых к атакам типа “отказ в обслуживании”, распространение программных модулей.


3. Основные уязвимые стороны P2P

Реализация и использование распределенных систем имеют не только плюсы, но и минусы, связанные с особенностями обеспечения безопасности. Получить контроль над столь разветвленной и большой структурой, какой является сеть P2P, или использовать пробелы в реализации протоколов для собственных нужд - желанная цель для хакеров. К тому же защитить распределенную структуру сложнее, чем централизованный сервер.

Столь огромное количество ресурсов, которое имеется в сетях P2P, тяжело шифровать/дешифровать, поэтому большая часть информации об IP-адресах и ресурсах участников хранится и пересылается в незашифрованном виде, что делает ее доступной для перехвата. При перехвате злоумышленник не только получает собственно информацию, но также узнает и об узлах, на которых она хранится, что тоже опасно.

Только в последнее время в клиентах большинства крупных сетей эта проблема стала решаться путем шифрования заголовков пакетов и идентификационной информации. Появляются клиенты с поддержкой технологии SSL, внедряются специальные средства защиты информации о местонахождении ресурсов и пр.

Серьезная проблема - распространение “червей” и подделка ID ресурсов с целью их фальсификации. Например, в клиенте Kazaa используется хеш-функция UUHash, которая позволяет быстро находить ID для больших файлов даже на слабых компьютерах, но при этом остается возможность для подделки файлов и записи испорченного файла, имеющего тот же ID.

Чтобы справиться с описанной проблемой, клиенты должны пользоваться надежными хеш-функциями (“деревьями” хеш-функций, если файл копируется по частям), такими, как SHA-1, Whirlpool, Tiger, и только для решения малоответственных задач - контрольными суммами CRC. Для уменьшения объемов пересылаемых данных и облегчения их шифрования можно применить компрессию. Для защиты от вирусов нужно иметь возможность хранить идентифицирующую метаинформацию о “червях”, как это, в частности, сделано в сети Gnutella2.

Другая проблема - возможность подделки ID серверов и узлов. При отсутствии механизма проверки подлинности пересылаемых служебных сообщений, например с помощью сертификатов, существует возможность фальсификации сервера или узла (многих узлов). Так как узлы обмениваются информацией, подделка некоторых из них приведет к компрометации всей сети или ее части. Закрытое ПО клиентов и серверов не является решением проблемы, так как есть возможность для реинжиниринга протоколов и программ (reverse engineering).

Часть клиентов только копируют чужие файлы, но не предлагают ничего для копирования другим (leechers).

В московских домовых сетях на нескольких активистов, делающих доступными более 100 Гбайт информации, приходится около сотни, выкладывающих менее 1 Гбайт. Для борьбы с этим используются разные методы. В eMule применен метод кредитов: скопировал файл - кредит уменьшился, позволил скопировать свой файл - кредит увеличился (xMule - кредитная система с поощрением распространения редких файлов). В сети eDonkey стимулируется размножение источников, в Bittorrent реализована схема “сколько блоков файла получил, столько отдал” и т. п.


4. Некоторые пиринговые сети

4.1 DirectConnect

пиринговый сеть torrent одноранговый

Direct Connect - это частично централизованная файлообменная (P2P) сеть, в основе работы которой лежит особый протокол, разработанный фирмой NeoModus.

NeoModus была основана Джонатаном Хессом (Jonathan Hess) в ноябре 1990 года как компания, зарабатывавшая на adware-программе «Direct Connect». Первым сторонним клиентом стал «DClite», который никогда полностью не поддерживал протокол. Новая версия Direct Connect уже требовала простой ключ шифрования для инициализации подключения, этим он надеялся блокировать сторонние клиенты. Ключ был взломан и автор DClite выпустил новую версию своей программы, совместимой с новым программным обеспечением от NeoModus. Вскоре, код DClite был переписан, и программа была переименована в Open Direct Connect. Кроме всего прочего, ее пользовательский интерфейс стал многодокументным (MDI), и появилась возможность использовать плагины для файлообменных протоколов (как в MLDonkey). У Open Direct Connect также не было полной поддержки протокола, но появился под Java. Немногим позже, начали появляться и другие клиенты: DCTC (Direct Connect Text Client), DC++ и др.

Сеть работает следующим образом. Клиенты подключаются к одному или нескольким серверам, так называемым хабам для поиска файлов, которые обычно не связаны между собой (некоторые типы хабов можно частично или полностью связать в сеть, используя специализированные скрипты или программу Hub-Link) и служат для поиска файлов и источников для их скачивания. В качестве хаба чаще всего используются PtokaX, Verlihub, YnHub, Aquila, DB Hub, RusHub. Для связи с другими хабами используются т.н. dchub-ссылки:

dchub://[ имя пользователя ]@[ IP или Домен хаба ]:[ порт хаба ]/[путь к файлу]/[имя файла]

Отличия от других P2P-систем:

1. Обусловленные структурой сети

· Развитый многопользовательский чат

· Сервер сети (хаб) может быть посвящен определенной теме (например музыке конкретного направления), что позволяет легко находить пользователей с требуемой тематикой файлов

· Присутствие привилегированных пользователей - операторов, обладающих расширенным набором возможностей управления хабом, в частности, следящих за соблюдением пользователями правил чата и файлообмена

2. Зависящие от клиента

· Возможность скачивать целые директории

· Результаты поиска не только по названиям файлов, но и по директориям

· Ограничения на минимальное количество расшаренного материала (по объёму)

· Поддержка скриптов с потенциально безграничными возможностями как на клиентской стороне, так и на стороне хаба (верно не для всяких хабов и клиентов)

Авторы клиента DC++ разработали для решения специфичных проблем принципиально новый протокол, называнный Advanced Direct Connect (ADC), цель которого - повышение надежности, эффективности и безопасности файлообменной сети. 2 декабря 2007 года вышла окончательная версия протокола ADC 1.0. Протокол продолжает развиваться и дополняться.

4.2 Bit Torrent

BitTorrent (букв. англ. «битовый поток») - пиринговый (P2P) сетевой протокол для кооперативного обмена файлами через Интернет.

Файлы передаются частями, каждый torrent-клиент, получая (скачивая) эти части, в то же время отдаёт (закачивает) их другим клиентам, что снижает нагрузку и зависимость от каждого клиента-источника и обеспечивает избыточность данных. Протокол был создан Брэмом Коэном, написавшим первый torrent-клиент «BitTorrent» на языке Python 4 апреля 2001 года. Запуск первой версии состоялся 2 июля 2001 года.

Для каждой раздачи создаётся файл метаданных с расширением.torrent, который содержит следующую информацию:

URL трекера;

Общую информацию о файлах (имя, длину и пр.) в данной раздаче;

Контрольные суммы (точнее, хеш-суммы SHA1) сегментов раздаваемых файлов;

Passkey пользователя, если он зарегистрирован на данном трекере. Длина ключа устанавливается трекером.

Необязательно:

Хеш-суммы файлов целиком;

Альтернативные источники, работающие не по протоколу BitTorrent. Наиболее распространена поддержка так называемых web–сидов (протокол HTTP), но допустимыми также являются ftp, ed2k, magnet URI.

Файл метаданных является словарем в bencode формате. Файлы метаданных могут распространяться через любые каналы связи: они (или ссылки на них) могут выкладываться на веб-серверах, размещаться на домашних страницах пользователей сети, рассылаться по электронной почте, публиковаться в блогах или новостных лентах RSS. Также есть возможность получить info часть публичного файла метаданных напрямую от других участников раздачи благодаря расширению протокола "Extension for Peers to Send Metadata Files". Это позволяет обойтись публикацией только магнет-ссылки. Получив каким-либо образом файл с метаданными, клиент может начинать скачивание.

Перед началом скачивания клиент подсоединяется к трекеру по адресу, указанному в торрент-файле, сообщает ему свой адрес и хеш-сумму торрент-файла, на что в ответ клиент получает адреса других клиентов, скачивающих или раздающих этот же файл. Далее клиент периодически информирует трекер о ходе процесса и получает обновлённый список адресов. Этот процесс называется объявлением (англ. announce).

Клиенты соединяются друг с другом и обмениваются сегментами файлов без непосредственного участия трекера, который лишь хранит информацию, полученную от подключенных к обмену клиентов, список самих клиентов и другую статистическую информацию. Для эффективной работы сети BitTorrent необходимо, чтобы как можно больше клиентов были способны принимать входящие соединения. Неправильная настройка NAT или брандмауэра могут этому помешать.

При соединении клиенты сразу обмениваются информацией об имеющихся у них сегментах. Клиент, желающий скачать сегмент (личер), посылает запрос и, если второй клиент готов отдавать, получает этот сегмент. После этого клиент проверяет контрольную сумму сегмента. Если она совпала с той, что записана в торрент-файле, то сегмент считается успешно скачанным, и клиент оповещает всех присоединенных пиров о наличии у него этого сегмента. Если же контрольные суммы различаются, то сегмент начинает скачиваться заново. Некоторые клиенты банят тех пиров, которые слишком часто отдают некорректные сегменты.

Таким образом, объем служебной информации (размер торрент-файла и размер сообщений со списком сегментов) напрямую зависит от количества, а значит, и размера сегментов. Поэтому при выборе сегмента необходимо соблюдать баланс: с одной стороны, при большом размере сегмента объем служебной информации будет меньше, но в случае ошибки проверки контрольной суммы придется скачивать еще раз больше информации. С другой стороны, при малом размере ошибки не так критичны, так как необходимо заново скачать меньший объём, но зато размер торрент-файла и сообщений об имеющихся сегментах становится больше.

Когда скачивание почти завершено, клиент входит в особый режим, называемый end game. В этом режиме он запрашивает все оставшиеся сегменты у всех подключенных пиров, что позволяет избежать замедления или полного «зависания» почти завершенной закачки из-за нескольких медленных клиентов.

Спецификация протокола не определяет, когда именно клиент должен войти в режим end game, однако существует набор общепринятых практик. Некоторые клиенты входят в этот режим, когда не осталось незапрошенных блоков, другие - пока количество оставшихся блоков меньше количества передающихся и не больше 20. Существует негласное мнение, что лучше поддерживать количество ожидаемых блоков низким (1 или 2) для минимизации избыточности, и что при случайном запрашивании меньший шанс получить дубликаты одного и того же блока.

Недостатки и ограничения

· Недоступность раздачи – если нет раздающих пользователей (сидов);

· Отсутствие анонимности:

Пользователи незащищенных систем и клиентов с известными уязвимостями могут быть подвергнуты атаке.

Возможно узнать адреса пользователей, обменивающихся контрафактным контентом и подать на них в суд.

· Проблема личеров – клиентов, которые раздают гораздо меньше, чем скачивают. Это ведет к падению производительности.

· Проблема читеров – пользователей, модифицирующих информацию о количестве скачанных\переданных данных.

Персонализация – протокол не поддерживает ников, чата, просмотра списка файлов пользователя.


Заключение

Современные пиринговые сети претерпели сложную эволюцию и стали во многих отношениях совершенными программными продуктами. Они гарантируют надежную и высокоскоростную передачу больших объемов данных. Они имеют распределённую структуру, и не могут быть уничтожены при повреждении нескольких узлов.

Технологии, опробованные в пиринговых сетях, применяются сейчас во многих программах из других областей:

Для скоростного распространения дистрибутивов опенсорсных программ (с открытым кодом);

Для распределённых сетей передачи данных таких как Skype и Joost.

Однако системы обмена данными часто используются в противоправной сфере: нарушаются закон об авторских правах, цензура и т.д. Можно сказать следующее: разработчики пиринговых сетей отлично понимали, для чего те будут использоваться, и позаботились об удобстве их использования, анонимности клиентов и неуязвимости системы в целом. Программы и системы обмена данными часто относят к «серой» зоне интернета - зоне, в которой нарушается законодательство, но доказать виновность причастных к нарушению лиц или сложно, или невозможно.

Программы и сети обмена данными находятся где-то на «окраине» интернета. Они не пользуются поддержкой крупных компаний, иногда им вообще никто не содействует; их создатели, как правило, хакеры, которым не по душе интернет-стандарты. Программы обмена данными не любят производители брандмауэров, маршрутизаторов и подобного оборудования, а также интернет-провайдеры (ISP) - «хакерские» сети отбирают у них значительную часть драгоценных ресурсов. Поэтому провайдеры пытаются всячески вытеснить и запретить системы обмена данными или ограничить их деятельность. Однако в ответ на это создатели систем обмена данными снова начинают искать противодействия, и часто добиваются отличных результатов.

Реализация и использование распределенных систем имеют не только плюсы, но и минусы, связанные с особенностями обеспечения безопасности. Получить контроль над столь разветвленной и большой структурой, какой является сеть P2P, или использовать пробелы в реализации протоколов для собственных нужд - желанная цель для хакеров. К тому же защитить распределенную структуру сложнее, чем централизованный сервер.

Столь огромное количество ресурсов, которое имеется в сетях P2P, тяжело шифровать/дешифровать, поэтому большая часть информации об IP-адресах и ресурсах участников хранится и пересылается в незашифрованном виде, что делает ее доступной для перехвата. При перехвате злоумышленник не только получает собственно информацию, но также узнает и об узлах, на которых она хранится, что тоже опасно.

Только в последнее время в клиентах большинства крупных сетей эта проблема стала решаться путем шифрования заголовков пакетов и идентификационной информации. Появляются клиенты с поддержкой технологии SSL, внедряются специальные средства защиты информации о местонахождении ресурсов и пр.

Серьезная проблема - распространение “червей” и подделка ID ресурсов с целью их фальсификации. Например, в клиенте Kazaa используется хеш-функция UUHash, которая позволяет быстро находить ID для больших файлов даже на слабых компьютерах, но при этом остается возможность для подделки файлов и записи испорченного файла, имеющего тот же ID.

В настоящее время выделенные серверы и узлы периодически обмениваются между собой верифицирующей информацией и при необходимости добавляют поддельные серверы/узлы в черный список блокировки доступа.

Также ведется работа по созданию проектов, объединяющих сети и протоколы (например, JXTA – разработчик Билл Джой).


Список литературы

1. Ю. Н. Гуркин, Ю. А. Семенов. «Файлообменные сети P2P: основные принципы, протоколы, безопасность» // «Сети и Системы связи», №11 2006

06/02/2011 17:23 http://www.ccc.ru/magazine/depot/06_11/read.html?0302.htm

2. А. Грызунова Napster: история болезни InterNet magazine, number 22 06/02/2011 15:30 http://www.gagin.ru/internet/22/7.html

3. Современные компьютерные сети Реферат 06/02/2011 15:49 http://5ballov.qip.ru/referats/preview/106448

4. 28/01/2011 16:56 http://ru.wikipedia.org/wiki/Peer-to-peer

5. http://style-hitech.ru/peer-to-peer_i_tjekhnologii_fajloobmjena

28/01/2011 15:51

МГОУ Peer-to-peer технологии Выполнила: студентка 1 курса ФМФ магистратуры Кулаченко Надежда Сергеевна Проверил: Чернышенко Сергей Викторович

Цель работы: изучение принципа функционирования P2P-сетей, анализ существующих топологий сетей, алгоритмов работы, протоколов и клиентских программ, основных возможностей предоставляемых P2P-сетями, выявление достоинств и недостатков.

Теоретическая часть:

1. Общее описание P2P-сетей. Принцип работы. Описание существующих топологий. Сферы применения. Преимущества и недостатки P2P-сетей.

2. Обмен файлами, распределенные вычисления. Особенности построения P2P-сетей в зависимости от сферы деятельности, в которой они применяются. Алгоритмы функционирования.

Программные средства:

1. Обзор популярных протоколов для обмена файлами. Сравнительный анализ.

2. Обзор популярных клиентских программ для обмена файлами. Сравнительный анализ.

Практическая часть:

1. Установка и настройка bitTorrent-трекера.

Теоретическая часть

P2P сети

К Р2Р относятся технологии, предоставляющие компьютерам в сети равноправные возможности обмена различными ресурсами (в том числе и вычислительными). Классическая архитектура - тип сети, в которой все рабочие станции имеют равные возможности и права. Для решения задачи создается одноранговая (peer-to-peer) вычислительная среда, которая позволяет отдельным элементам сети взаимодействовать без помощи серверов. Каждый участвующий компьютер вносит свой вклад в виде файлов, дискового пространства, процессорного времени. «P2P - это технология построения распределенной сети, где каждый узел может одновременно выступать как в роли клиента (получателя информации), так и в роли сервера (поставщика информации) ». P2P сеть (от англ. peer-to-peer, децентрализованная или пиринговая) состоит из равноправных узлов, каждый из которых связан с некоторым подмножеством узлов сети.

Информация между узлами в сети, которые на данный момент могут быть не связаны непосредственно друг с другом, передается по принципу, схожему со своеобразной эстафетой - от одного узла к другому узлу, также передача информации может происходить в результате установления временного прямого соединения между узлами. Вся информация о маршрутизации и авторизации сообщений, передаваемых от узла к узлу, хранится на этих же самых отдельных узлах, а не на одном выделенном сервере. Такая организация, в отличие от клиент-серверной, позволяет сети при любом количестве узлов и их сочетании сохранять свою работоспособность.

«Клиент-сервер» и P2P сети.

Централизованная архитектура «клиент-сервер» подразумевает, что сеть зависит от центральных узлов (серверов), обеспечивающих подключенные к сети терминалы (т.е. клиентов) необходимыми сервисами. В этой архитектуре ключевая роль отводится серверам, которые определяют сеть независимо от наличия клиентов. Очевидно, что рост количества клиентов сети типа «клиент–сервер» приводит к росту нагрузок на серверную часть. Таким образом, на определенном уровне развития сети она может оказаться перегруженной. Главным преимуществом такой системы является ее простота. Однако стабильность и надежность таких сетей существенно ниже, чем у пиринговых.

Децентрализованные системы, «чистые P2P сети», примером может послужить сеть Gnutella, представляют собой прямую противоположностью централизованных систем.

Гибридная топология: децентрализованная + централизованная (частично децентрализованная) – в сетях такого типа существуют сервера, основной задачей которых является координации работы, поиск и предоставления информации о существующих машинах сети и их статусе. Частично децентрализованные сети совмещают в себе качества централизованных сетей и надёжность децентрализованных (например сеть не теряет своей работоспособности при возникновении неполадок с одним или несколькими серверами). Примером гибридных файлообменных сетей могут служить: EDonkey и BitTorrent сети.

Рис.1 Топология сетей

Преимущества пиринговых сетей:

· скорость обмена информацией;

· Устойчивость сети к различным сбоям, в том числе устойчивость к внетехнологическому вмешательству;

  • расширяемость - практически неограниченные возможности для расширения информационных ресурсов системы;

· масштабируемость.

Недостатки пиринговых сетей:

  • неуправляемость;
  • проблемы безопасности;
  • информационная несогласованность, недостоверность информации.

Стандартизация в области P2P

P2P - это не только сети, но еще и сетевой протокол, обеспечивающий возможность создания и функционирования сети равноправных узлов, и их взаимодействия. Множество узлов, объединенных в единую систему и взаимодействующих в соответствии с протоколом P2P, образуют пиринговую сеть. Для реализации протокола P2P используются клиентские программы, обеспечивающие функционирование как отдельных узлов, так и всей пиринговой сети.
P2P относятся к прикладному уровню сетевых протоколов и являются наложенной сетью, которая использует транспортные протоколы стека TCP/IP - TCP или UDP. Протоколу P2P посвящено несколько основополагающих документов сети Интернет - RFC (в частности, последний датируется 2008 годом - RFC 5128 State of Peer-to-Peer (P2P) Communication across Network Address Translators).
В настоящее время при реализации пиринговых сетей используются самые различные методологии и подходы. В частности, компания Microsoft разработала протоколы для P2P-сетей Scribe и Pastry. Поддержка протокола PNRP (Peer Name Resolution Protocol), также относящегося к P2P-системам, была включена в состав Windows Vista.
Одну из удачных попыток стандартизации протоколов P2P предприняла компания Sun Microsystems в рамках проекта JXTA. Этот проект реализуется с целью унифицированного создания P2P-сетей для различных платформ. Цель проекта JXTA - разработка типовых инфраструктурных решений и способов их использования при создании P2P-приложений для работы в неоднородных средах.
В рамках проекта JXTA определено шесть протоколов, на основе которых могут создаваться прикладные системы:

· Peer Discovery Protocol (PDP). Узлы пользуются данным протоколом для поиска всех открытых JXTA-ресурсов. Низкоуровневый протокол PDP поддерживает базовые механизмы поиска. Любые прикладные системы могут включать собственные высокоуровневые механизмы поиска, которые реализованы поверх PDP протокола.

· Peer Resolver Protocol (PRP). Этот протокол стандартизирует формат запросов на доступ к ресурсам и сервисам. При реализации этого протокола с узла может быть послан запрос и получен на него ответ.

· Peer Information Protocol (PIP). Данный протокол применяется для определения состояния узла в сети JXTA. Узел, получающий PIP-сообщение, может в полной или сокращенной форме переслать ответ о своем состоянии либо проигнорировать это сообщение.

· Peer Membership Protocol (PMP). Узлы используют этот протокол для подключения и выхода из группы.

· Pipe Binding Protocol (PBP). В JXTA узел получает доступ к сервису через канал (pipe). С помощью PBP узел может создать новый канал для доступа к сервису или работать через уже существующий.

· Endpoint Routing Protocol (ERP). Используя этот протокол, узел может пересылать запросы к маршрутизаторам других узлов с целью определения маршрутов при отправке сообщений.

Области применения

Наиболее распространенными областями применения P2P технологий являются следующие направления:

· Обмен файлами – так называемые файлообменные сети. P2P файлообменные сети являются альтернативой устаревшим FTP-архивам, не соответствующим современным требованиям. Более подробно файлообменные сети рассмотрены далее.

· Распределенные вычисления. Одно из наиболее перспективных направлений развития, т.к. применение P2P технологий позволяют за сравнительно короткие сроки решать такие задачи, вычисление которых на суперкомпьютерах заняло бы десятки, а то и сотни лет. О данной области применения P2P технологии также более подробно рассказано далее.

· Обмен сообщениями. Jabber, ICQ.

· P2P-телефония. Skype.

· Сети групповой работы. Groove Network (защищенное пространство для коммуникаций), OpenCola (поиск информации и обмен ссылками).

· Параллельное программирование.

· Резервное копирование данных.

· P2P телевидение. Примером может служить проект P2P-Next, занимающийся разработкой пирингового телевидения пригодного для широковещательной трансляции телевизионных передач.

Файлообменные сети P2P.

Файлообменная сеть - одна из наиболее распространенных P2P-сетей, предназначенная для для совместного использования файлов. В основе технологии P2P лежит принцип децентрализации. Идея распределенных равноправных узлов является альтернативой подходу клиент-сервер.

Давайте отвлечемся от запретов в различных странах, давайте не будем думать, что P2P - механизм обхода блокировок.

Предлагаю вам альтернативное мнение на P2P - какие проблемы будущего и настоящего сможет решить данная архитектура информационных сетей.

Что такое настоящий P2P ?

Давайте введем понятие - настоящий P2P .

Настоящий P2P - это одноранговая сеть, в которой абсолютно все узлы сети выполняют одинаковые функции или автоматически могут изменять набор своих функций в зависимости от окружающих условий.

Изменение функций - это ничто иное как предоставление тех функций которые не могут работать у некоторых узлов одноранговой сети из-за ограничений:
1) За NAT"ом
2) Мобильные устройства

Оба класса устройств либо не могут иметь прямой доступ к сети (NAT) или могут, но строго не рекомендовано - (Мобильные устройства) из-за повышенного энергопотребления при огромном количестве подключений.

Для устранения данной проблемы используются такие технологии как TCP Relay (тк большинство P2P систем используют UDP, с огромным количеством одновременных подключений можно выбрать себе узел который будет выполнять функции получения запросов из сети по UDP и пересылки их на конечное устройство по TCP через одно и тоже соединение) Хочу напомнить, что подобный механизм уже был очень давно реализован в Skype, до его покупки компанией MS эти функции работали, позднее - понятие «супер ноды» в Skype ушло и их заменяют сервера MS.

Очень важно не путать P2P и Mesh сети. P2P - это одноранговое взаимодействие на уровне 3 и выше по модели OSI, Mesh - на 3 и ниже соответственно.

Какие проблемы решает P2P сети и какие технологии уйдут при повсеместном внедрении P2P?

Кэширование
В нынешнее время, некоторые провайдеры, а практически все операторы сотовой связи кэшируют трафик. Таким образом достигается экономия ресурсов и аплинков, что бы не гонять одинаковый трафик через магистрали.

Но зачем нужно кэширование, если контент попавший в сеть оператора при повторном запросе скорее всего будет запрошен из сети оператора?
При этом не надо строить никакой новой инфраструктуры вообще.

CDN
Система доставки контента используется в основном для доставки «тяжелого» контента, музыки, видео, игровых образом (steam), что бы снизить нагрузку на основной сервер и снизить время отклика - в разные страны и/или регионы ставиться CDN сервера, которые выполняют функцию балансировки нагрузки.

Данные сервера нужно обслуживать, затрачивая человека-часы их надо настраивать и они не смогут динамически увеличить свою пропускную способность или допустим:
В Нижнем Новгороде всегда был популярен сервис Giwi.get который позволяет в он-лайне смотреть легальный контент, CDN сервер в регионе может одновременно предоставить возможность просмотра фильмов и сериалов только 100 000 пользователей. Но внезапно на сервисе появляется новый контент (сериал) по прогнозам которые были сделаны на основе исследований, данный сериал не должен был заинтересовать людей из данного региона.

Но почему, то он заинтересовал, и все решили его посмотреть - естественно CDN не справиться, в лучшем случае контент сможет обработать соседний CDN, но не факт что CDN соседний готов к такой нагрузке.

Нехватка каналов связи
Провайдеры последней мили готовы предоставить каналы в 1 Гигабит/с, и даже сеть внутри города сможет прокачать такую нагрузку, но вот незадача, от города идет магистральный канал, который не рассчитан на такую нагрузку, а расширение канала - это миллионы (подставьте валюту на выбор).

Естественно, данную проблемы опять же решают P2P сервисы, достаточно что бы в городе был хотя бы 1 источник контента (предварительно скачанный через магистраль) - все будут иметь доступ к контенту на максимальной скорости локальной сети (внутригородской)

Укрепление распределенности интернета
В нынешнем мире Аплинки - это всё, точки обмена трафика есть в городах, но провайдер скорее купит себе еще пару гигабит на магистрали, чем расширит каналы до точки обмена трафика или подключиться к соседним провайдерам.
Уменьшение нагрузки на аплинки
При использовании P2P - вполне логично, что провайдеру будет важнее иметь более широкие внутренние каналы, чем внешние, да и зачем платить за дорогостоящий аплинк, если с большой долей вероятности требуемый контент может быть найден в сети соседнего провайдера.

Провайдеры кстати тоже будут рады, даже сейчас провайдер предоставляет такие тарифы, что его аплинк не ровняется суммарному количеству всех пользователей.
Другими словами - если все пользователи начнут использовать на 100% свой тариф - аплинк у провайдера закончиться очень быстро.

Очевидно, что P2P решения дают возможность провайдеру сказать, что он предоставляет вам доступ к сети на скорости хоть 1 TB\c тк контент в сети очень редко бывает уникален, провайдер (который имеет пирсинг с соседями провайдерами из города) сможет с большой долей вероятности предоставить доступ к контенту на тарифной скорости.

Никаких лишних серверов в сети
Сейчас в сети провайдера обычно стоят такие сервера как: Google CDN (/Youtube), Yandex CDN/пиринг, DPI, + другие специфические сервера CDN/Кэширования которые используются в данном регионе.

Очевидно, что можно ликвидировать все CDN сервера и лишний пиринг (с сервисами, а не с провайдерами), DPI в такой ситуации тоже будет не нужен, тк в часы ЧНН не будет таких резких скачков нагрузку. Почему?

ЧНН - Забудьте эту аббревиатуру
ЧНН - Час наибольшей нагрузки, традиционно это утренние часы и вечерние часы, причем всегда заметны несколько пиков ЧНН в зависимости от рода занятости людей:

Пики вечернего ЧНН:
1) Возвращение школьников из школы
2) Возвращение студентов из вузов
3) Возвращение работников которые работают по графику 5/2

Данные пики вы сможете увидеть на любом оборудовании которое анализируют сетевую нагрузку на канал.

P2P Решает и эту проблему, тк велика вероятность, что контент который интересен школьникам может быть интересен как студентам так и работникам - соответственно он уже есть внутри сети провайдера - соответственно ЧНН на магистрали не будет.

Далёкое будущее

Мы отправляем свои аппараты на луну и на марс, уже давно есть интернет на МКС.

Очевидно, что в дальнейшем развитие технологий позволит осуществлять полёты в далёкий космос и длительное нахождение человека на других планетах.

Они тоже должны быть связаны в общую сеть, если мы рассматриваем классическую систему Клиент-Сервер, и сервера расположены на земле, а клиенты скажем на Марсе - Пинг убьет любе взаимодействие.

А если мы предполагаем, что на другой планете будет наша колония которая будет расти - то как и на земле они будут пользоваться интернетом, понятное что им нужны будут те же инструменты, что и нам:
1) Мессенджер
2) Соц-сети
И это минимально-необходимое количество сервисов которые позволяют обмениваться информацией.

Логично, что контент который будет генерироваться на Марсе будет интересен и популярен на марсе, а не на земле, как быть соц.-сетям?
Устанавливать свои сервера которые будут автономно работать и через некоторое время синхронизироваться с землёй?

P2P сети решать и эту проблему - на марсе у источника контента свои подписчики, на земле - свои, но соц.-сеть одна и та же, но если у Марсианского жителя будет подписчик с земли - нет проблем, при наличии канала контент прилетит и на другую планету.

Что важно отметить - не будет рассинхронизации, которая может случиться в традиционных сетях, не надо устанавливать никаких лишних серверов там и даже что-то настраивать. P2P система позаботиться сама о поддержке актуальности контента.

Разрыв каналов

Вернемся к нашему мысленному эксперименту - на марсе живут люди, на земле живут люди - все они обмениваются контентом, но в один прекрасный момент происходит катастрофа и связь между планетами пропадает.

При традиционных клиент-серверных системах мы можем получит полностью неработающую соц.-сеть или другую службу.
Помните, что у каждого сервиса есть центр авторизации. Кто будет заниматься авторизацией, когда канал нарушен?
А марсианские тинэйджеры тоже хотят постить фотографии своей марсианской еды в MarsaGram.

P2P Сети при разрыве канала с легкостью переходят в автономный режим - в котором она будет существовать полностью автономно и без какого-либо взаимодействия.
А как только связь появиться - все службы автоматически синхронизируется.

Но марс - это далеко, даже на земле могут быть проблемы с разрывом канала связи.

Вспомните последние громкие проекты Google/Facebook с покрытием новых территорий интернетом.
Некоторые уголки нашей планеты всё еще не подключены к сети. Подключение может быть слишком дорогим или экономически не оправданным.

Если же в таких регионах стоить свою сеть (интранет) с последующим подключением её к глобальной по средствам очень узкого канала - спутника, то P2P решения позволяет на начальном этапе пользоваться всеми функциями как и при глобальной связанности сетей. А в последствии - как мы уже говорили выше - позволяет прокачать весь нужный контент через узкий канал.

Выживаемость сети

Если мы полагаемся на централизованную инфраструктуру у нас вполне конкретное количество точек отказа, да, есть еще и резервные копии и резервные дата-центры, но надо понимать, что если основной ДЦ будет поврежден из-за стихии, доступ к контенту будет замедлен в разы, если вообще не прекратиться.

Вспоминаем ситуацию с марсом, все устройства поступают на марс с земли, и в один прекрасный день сервер компании Uandex или LCQ ломается - перегорел контроллер RAID, или другая неисправность - и все марсиане опять же без MarsiGram или того хуже - не смогу обмениваться простыми сообщениями друг с другом. Новый сервер или его компоненты приедут с земли ох как не скоро.

При P2P решении - выход из строя одного участника сети никак не сказывается на работе сети.

Я - не могу представить будущее в котором наши системы останутся клиент-серверными, это сгенерирует огромное количество ненужных костылей в инфраструктуре, усложнит поддержку, добавит точки отказа, не позволит произвести масштабирование когда оно понадобиться, потребуются огромные усилия, если мы захотим что бы наши клиент-серверные решения работали не только на нашей планете.

Так, что будущее - это определенно P2P, как изменил мир P2P можно наблюдать уже сейчас:
Skype - небольшая компания не тратила деньги на сервера смогла вырасти до огромного гиганта
Bittorrent - OpenSource проекты могут передавать файлы не нагружая свои сервера

Это только два ярких представителя информационной революции. На подходе множество других программ которые изменят мир.

Пиринговые сети

Однора́нговые , децентрализо́ванные или пи́ринговые (от англ. peer-to-peer, P2P - точка-точка) сети - это компьютерные сети , основанные на равноправии участников. В таких сетях отсутствуют выделенные серверы , а каждый узел (peer) является как клиентом , так и сервером. В отличие от архитектуры клиент-сервера , такая организация позволяет сохранять работоспособность сети при любом количестве и любом сочетании доступных узлов.Так сказать "С глазу на глаз".

Впервые фраза «peer-to-peer» была использована в году Парбауэллом Йохнухуйтсманом (Parbawell Yohnuhuitsman) при разработке архитектуры Advanced Peer to Peer Networking фирмы

Устройство одноранговой сети

Например, в сети есть 12 машин, при этом любая может связаться с любой. В качестве клиента (потребителя ресурсов) каждая из этих машин может посылать запросы на предоставление каких-либо ресурсов другим машинам в пределах этой сети и получать их. Как сервер, каждая машина должна обрабатывать запросы от других машин в сети, отсылать то, что было запрошено, а также выполнять некоторые вспомогательные и административные функции.

Любой член данной сети не гарантирует никому своего присутствия на постоянной основе. Он может появляться и исчезать в любой момент времени. Но при достижении определённого критического размера сети наступает такой момент, что в сети одновременно существует множество серверов с одинаковыми функциями.

Частично децентрализованные (гибридные) сети

Помимо чистых P2P-сетей, существуют так называемые гибридные сети, в которых существуют сервера , используемые для координации работы, поиска или предоставления информации о существующих машинах сети и их статусе (on-line, off-line и т. д.). Гибридные сети сочетают скорость централизованных сетей и надёжность децентрализованных благодаря гибридным схемам с независимыми индексационными серверами, синхронизирующими информацию между собой. При выходе из строя одного или нескольких серверов, сеть продолжает функционировать. К частично децентрализованным файлообменным сетям относятся например EDonkey ,

Пиринговая файлообменная сеть

Обычно в таких сетях обмениваются фильмами и музыкой, что является извечной головной болью видеоиздательских и звукозаписывающих компаний, которым такое положение дел очень не по душе. Проблем им добавляет тот факт, что пресечь распространение файла в децентрализованной пиринговой сети технически невозможно - для этого потребуется физически отключить от сети все машины, на которых лежит этот файл, а таких машин (см. выше) может быть очень и очень много - в зависимости от популярности файла их число может достигать сотен тысяч. В последнее время видеоиздатели и звукозаписывающие компании начали подавать в суд на отдельных пользователей таких сетей, обвиняя их в незаконном распространении музыки и видео.

Известные децентрализованные и гибридные сети

Пиринговые сети для новичков описаны в статье: Файлообменные программы

  • ED2K она-же eDonkey2000 - сеть централизованного типа, крупнейшая из ныне существующих файлообменных сетей. Поиск выполняют специализированные серверы, связанные между собой. Клиенты самостоятельно обмениваются по протоколу MFTP . Компания MetaMachine разработчики исходной концепции и первого клиента основанного на веб-интерфейсе (Edonkey 2000 v1.4.5)в 2005 году прекратили поддержку этого проекта, однако сеть продолжает функционировать за счет более совершенного и более мощного клиента eMule , который использует механизмы - представляет из себя слабо связанные между собой выделенные сервера для поиска (хабы). Хабы Direct Connect очень удобны для организации файлового обмена в локальных сетях.
  • Advanced Direct Connect - эволюционное развитие сетей Direct Connect с устранение основных недостатков.
  • FastTrack , iMesh - первоначально была реализована в KaZaA …
  • giFT (mlDonkey.
  • Shareaza , BearShare , Phex .
  • Shareaza .
  • Ares - файлообменная сеть для любых файлов.
  • проприетарный протокол. Весь поиск происходит через центральный сервер, на котором есть бесплатная регистрация и платная подписка (официальный сайт). Клиенты: mlDonkey, SolarSeek .
  • Entropy - анонимные и устойчивые к цензуре файлообменные сети.
  • Blubster, Piolet , RockItNet.
  • NEOnet - частично-децентрализованая коммерческая сеть на условно-платной основе. Является специфической вспомогательной модификацией протокола DHT при работе в отделенном коммерческом сегменте сети Gnutella1 , поддерживаемом с помощью клиента Morpheus . Свойства криптографической защиты и сетевой анонимности в сети NeoNet не поддерживаются.
  • Tesla - Возможно, содержит MalWare.
  • Filetopia - потенциально безопасная сеть для обмена самым разным контентом.
  • MUTE - Клиенты: MFC Mute , Napshare .
  • Peer2Mail - принципиально это даже не пиринговая сеть, а разновидность ПО позволяющего передавать файлы между двумя хостами (peer-to-peer), используя почтовые сервисы в качестве роутера. Технология передачи файлов основана на инкапсуляции в SMTP-протокол.
  • Ants p2p - открытая P2P-сеть 3-го поколения повышенной безопасности. клиент.
  • Anthill - система(сеть) академического исследования сложных адаптивных систем, основанных на Rodi - поддерживает поиск по содержанию файлов. AppleJuice - частично децентрализованная сеть (как eDonkey).
  • BeOS.
  • - глобальный виртуальный диск для обмена файлами с авторизацией и шифрованием.
  • ProxyShare - новая высокоскоростная сеть с больши́ми возможностями.
  • Acquisition - сеть и клиент для Mac.
  • RShare - анонимная открытая P2P -сеть.
  • Marabunta - альтернативная пиринговая система ориентированная исключительно на предоставление услуг обмена мгновенными сообщениями на общей доске объявлений (P2P-chat) . Программа в основном рассчитана на применение в локальных сетях, и потому не содержит возможностей автообновления нод-листа (его приходится пополнять вручную) . При наличии постоянных IP-адресов реципиентов, может работать и в интернете, однако встроенная функция bootstrap с серверов разработчиков не работоспособна из-за того, что с 2006 года проект практически перестал развиваться.
  • SKad или OpenKAD - модификация протокола Winny . Дальнейше развитие этой сети в сторону сетевой анонимности привело к появлению программы Share . И на сегодняшний день существует и третья версия под управлением программы Perfect Dark . К сожалению все три версии сети SKad развивались паралельно и хотя они имеют много общего, но из-за видоизменения процедуры кодирования нод-листа в сторону более жесткого шифрования, они не совместимы между собой. Таким образом все три программы образовали три идентичные сети с разными степенями защищенности.
  • - Собственническое ПО от Microsoft.
  • P-Grid - самоорганизующаяся децентрализованная сеть.
  • P2PTV - сеть телевизионных каналов.
  • KoffeePhoto - сеть для обмена фотографиями.
  • Poisoned – программа для работы с файлообменными сетями Gnutella, OpenFT, FastTrack в среде операционной системы Mac OS X . Представляет собой графический интерфейс для фонового приложения giFT.

Пиринговые сети распределенных вычислений

Технология пиринговых сетей (не подвергающихся квазисинхронному исчислению) применяется также для распределённых вычислений . Они позволяют в сравнительно очень короткие сроки выполнять поистине огромный объём вычислений, который даже на суперкомпьютерах потребовал бы, в зависимости от сложности задачи, многих лет и даже столетий работы. Такая производительность достигается благодаря тому, что некоторая глобальная задача разбивается на большое количество блоков, которые одновременно выполняются сотнями тысяч компьютеров, принимающими участие в проекте.


Wikimedia Foundation . 2010 .

Смотреть что такое "Пиринговые сети" в других словарях:

    Одноранговые, децентрализованные или пиринговые (от англ. peer to peer, P2P точка точка) сети это компьютерные сети, основанные на равноправии участников. В таких сетях отсутствуют выделенные серверы, а каждый узел (peer) является как клиентом,… … Википедия

    Опорная сеть Интернета (англ. Internet backbone) главные магистрали передачи данных между огромными, стратегически взаимосвязанными сетями и основными маршрутизаторами в Интернете. Эти магистрали передачи данных контролируются… … Википедия

    Запрос «P2P» перенаправляется сюда; см. также другие значения. Одноранговая, децентрализованная или пиринговая (от англ. peer to peer, P2P равный к равному) сеть это оверлейная компьютерная сеть, основанная на равноправии участников. В такой … Википедия

Работа с отдельными камерами и целыми системами видеонаблюдения через интернет приобрела широкую популярность благодаря ряду аналитических функций и оперативному доступу к устройствам.

Как правило, большинство технологий, которые для этого используются, требуют присвоения камере или видеорегистратору дорогостоящего белого IP адреса, сложной процедуры настройки с использованием сервисов UPnPct и DDNS. Альтернативой этому является применение технологии Р2Р.

Р2Р (peer-to-peer) – пиринговый протокол связи, отличается более эффективным использованием полосы пропускания канала передачи сигнала и высокими показателями отказоустойчивости.

Впервые термин peer-to-peer (Advanced Peer to Peer Networking) – расширенные одноранговые сети, был использован корпорацией IBM в сетях с классической одноуровневой архитектурой и равноправными рабочими станциями. Он применялся в процессе динамической маршрутизации без использования сервера, когда каждый ПК выполнял функцию и клиента, и сервера. Сейчас более свободная версия перевода аббревиатуры звучит как «равный к равному».

Основная область применения – это удаленное видеонаблюдение за различными объектами, например:

  • открытая складская или строительная площадка;
  • магазин или производственное помещение;
  • приусадебный участок или дача.

Камеры видеонаблюдения с Р2Р технологией передачи изображения используются преимущественно в бытовых небольших и средних частных системах видеонаблюдения, выполняя некоторые функции систем безопасности и тревожной сигнализации.

Идентификация камеры в сети интернет осуществляется по уникальному ID коду, который присваивается устройству производителем. Поиск и использование производится при помощи специального программного обеспечения и облачных сервисов .

ПРЕИМУЩЕСТВА Р2Р ВИДЕОНАБЛЮДЕНИЯ

Простота настроек сетевого оборудования - основное преимущество Р2Р технологии перед другими способами передачи сигнала. Фактически, не имея глубоких познаний в сетевых протоколах, процедурах подключения и наладки, любой пользователь с начальными навыками работы в сети интернет может самостоятельно организовать удаленное видеонаблюдение.

Нет привязки к статическому IP адресу. Получение и содержание статического IP адреса может оказаться проблемой для рядового пользователя. Большинство провайдеров предоставляют услуги подключения к сети интернет на основании динамически изменяющихся IP адресов из определенного массива.

При каждом входе в сеть этот адрес для пользователя может изменяться, что потребует систематической настройки камер системы видеонаблюдения. Белый статический IP адрес провайдер предоставляет на платной основе и стоит эта услуга недешево.

Отсутствует зависимость от расстояния. Передача видеосигнала может осуществляться в любую точку планеты, где есть сеть интернет. Качество изображения зависит только от ширины канала и стабильной работы связи.

Возможность использования различных устройств для просмотра видео. Для осуществления мониторинга системы видеонаблюдения может использоваться как стационарный ПК или ноутбук, так и мобильные устройства: планшеты, смартфоны.

Доступная стоимость. Цена на камеры видеонаблюдения использующие технологию Р2Р не слишком отличается от стоимости обычных IP камер с сопоставимыми техническими и эксплуатационными параметрами.

Р2Р КАМЕРЫ ВИДЕОНАБЛЮДЕНИЯ

Ниже рассмотрены основные производители Р2Р камер и некоторые их модели.

Falcon Eye – компания производитель оборудования для систем видеонаблюдения и безопасности. Специализируется на беспроводных системах охранных GSM сигнализаций. Имеет официальное представительство в России с 2005 года. вся продукция производителя, которая реализуется в нашей стране, сертифицирована и адаптированы для работы в сложных погодных условиях. Соответствуют международном у стандарту ISO – 90001.

Модельный ряд камер видеонаблюдения Р2Р включает:

  • Falcon Eye FE-MTR 1300;
  • Falcon Eye FE-MTR 300 P2P;
  • Falcon Eye FE-ITR 1300.

Все видеокамеры дают изображение в высоком разрешении 1280х720, могут работать при освещении 0,1 Люкс и имеют интерфейс передачи сигнала Lan и Wi-Fi (Falcon Eye FE-ITR 1300 только Lan). Кроме того они оснащены детектором движения и могут активировать процесс видеозаписи по тревоге.

Запись может осуществляться на видеорегистраторы , в облачный сервис или на карту памяти. Наличие микрофона и динамика превращает камеру в интерактивное устройство для двухсторонних переговоров.

Foscam – компания была основана в 2002 году. Специализируется на выпуске устройств и IP камер для GSM видеонаблюдения. Продукция прошла сертификацию по международному стандарту ISO 9001 и отечественным ГОСТам. Устройства оснащены детектором движения, слотами для карт памяти и интерфейсом RJ 45 (кабельное сетевое подключение витая пара).

Наиболее популярные модели:

  • Foscam FI9821P;
  • Foscam FI9853EP;
  • Foscam FI9803EP.

Zodiac – компания предлагает устройства для бытовых и профессиональных систем видеонаблюдения. Все Р2Р камеры оборудованы системой инфракрасной подсветки, что позволяет производить видеосъемку в темное время суток.

Модели, распространенные на рынке:

  • Zodiac 909W;
  • Zodiac 911;
  • Zodiac 808 выполнена в уличном варианте в корпусе со степенью защиты IP65.

НАСТРОЙКА Р2Р ВИДЕОНАБЛЮДЕНИЯ

Настройка Р2Р видеокамеры занимает не более 5 минут и не требует глубоких знаний протоколов связи или сложных настроек программы. Независимо от используемой камеры или выбранного облачного сервиса алгоритм настройки следующий:

1. С сайта выбранного облачного сервиса скачивается и устанавливается программное обеспечение, совместимое с операционной системой устройства для просмотра.

2. Устанавливается камера, к ней подводится электропитание.

3. Камера подключается к сети интернет посредством локальной проводной сети или через беспроводные средства передачи информации – WiFi, GSM и т. п.

4. На устройстве для просмотра запускается ранее установленное ПО. В специальном поле для поиска набирается ID код. Его можно найти на корпусе камеры или в технической документации. У большинства моделей на корпусе так же размещают QR код, который можно отсканировать смартфоном или планшетом.

5. Для доступа к камере набирается стандартный пароль, который потом нужно обязательно сменить. У каждого производителя или модели он свой, указан на коробке или в паспорте устройства.

Установку системы Р2Р видеонаблюдения можно осуществлять и без использования камер с интегрированной технологией Р2Р. Достаточно в обычной систем видеонаблюдения использовать видеорегистратор с этой функцией. Тогда во время настройки необходимо указывать ID видеорегистратора, и через его интерфейс получить доступ к камерам.

Алгоритм настройки видеорегистратора ничем не отличается от настройки камеры. Примером такого устройства может служить гибридный видеорегистратор SPYMAX RL-2508H Light.

ОБЛАЧНЫЕ СЕРВИСЫ, ПОДДЕРЖИВАЮЩИЕ Р2Р ТЕХНОЛОГИЮ

Облачный Р2Р сервис является совокупностью серверов, которые дают возможность доступа к устройствам, поддерживающим соответствующую функцию. Таких ресурсов существует много. Они делятся на два типа. Сервисы, разработанные компаниями производителями оборудования.

Как правило, поддерживают только работу Р2Р камер компании разработчика. И универсальные сервисы, разработанные сторонними компаниями, которые совместимы с большинством устройств использующих Р2Р.

К примеру, сервисы Proto-X и RVi воспринимают только камеры и видеорегистраторы соответствующих разработчиков. Предустановки для быстрой настройки записывают еще на заводе в процессе производства.

Универсальный облачный Р2Р сервис – Easy4ip совместим с большинством популярных камер.

Для работы с Р2Р камерами необходимо ПО, устанавливаемое на устройстве просмотра:

  • PSS для операционной системы Windows и iOS;
  • iDMSS для мобильных устройств Apple;
  • gDMSS для устройств под управлением ОС Android.

Использование камер с Р2Р технологией дает возможность быстрой установки и настройки эффективной системы видеонаблюдения без привлечения дорогостоящих специалистов. Различные облачные сервисы предоставляют пользователю широкие функциональные возможности, аналогичные тем которые используются в сложных стационарных системах видеонаблюдения.

© 2010-2019 г.г.. Все права защищены.
Материалы, представленные на сайте, имеют ознакомительно-информационный характер и не могут использоваться в качестве руководящих документов

 

 

Это интересно: