→ Системный оператор единой энергетической системы. Стандарты напряжения в России Напряжение 220 в 50 гц

Системный оператор единой энергетической системы. Стандарты напряжения в России Напряжение 220 в 50 гц

Что значит 50 Гц?

    Пятьдесят Герц означает, что прибор рассчитан на работу от переменного тока частотой 50 Гц. То есть он изменяется от нуля до полного напряжения в обе стороны пятьдесят раз в секунду. Дело в том, что принятая в Европе частота промышленного переменного тока в 50 Гц - не универсальна и в других частях света частота промышленного тока другая! В США, например, 60 Гц. А если другая частота, то прибор, в котором есть электромотор, может сгореть - так как от частоты переменного тока напрямую зависит частота вращения синхронного электродвигателя переменного тока. Также, если в приборе есть трансформатор, то ток в нм будет преобразовываться неправильно, хотя входное напряжение будет тем, на которое рассчитан прибор, но после прохождения через внутренний трансформатор пониженные (или повышенные) напряжения будут другими.

    В России частота промышленного тока в сети 50 Гц, на не и нужно покупать бытовую технику.

    Герц - это единица измерения частоты периодического процесса. То есть если есть какая-то величина, которая вс время меняется туда-сюда (по фигу какая - напряжение, координата, проекция вектора скорости, концентрация вещества в растворе, число особей в популяции...), то для не можно ввести понятие частоты. То есть сколько таких изменений туда и потом обратно происходит в единицу времени. В секунду, или в минуту, или хоть в год, но в физике принято относить к секунде. И если за 1 секунду происходит 50 таких изменений туда и потом обратно к исходному значению (любому исходному значению - то есть какое бы мгновенное значение переменной величины мы ни взяли, мы с гарантией будет возвращаться именно к этому значению через равные промежутки времени), то частота равна 50 колебаниям в секунду, или 50 герцам.

    В сети с такой частотой меняется знак напряжения. Форма напряжения соответствует синусу. так что если в розетку воткнуть осциллограф, на его экране будет нарисована синусоида амплитудой примерно 310 вольт (да-да! Амплитуда там вовсе не 220...), и если цена деления экрана 1 секунда, то на каждую клеточку придтся 50 периодов этой синусоиды.

    Почему на некоторых приборах это пишут: потому что точность показаний, в зависимости от типа измерительной системы, может зависеть от частоты. Может и не зависеть, но может и зависеть. И обозначение 50 Гц (или, в международном обозначении этой единицы, 50 Hz) означает, что вот при такой частоте сети гарантируется паспортная точность прибора.

    Цифра 50Гц на обозначениях электрических приборов означает, что для их работы необходимо использовать напряжение сети переменного тока частотой 50Гц. Переменным электрическим током называется периодический процесс который изменяется по величине и направлению по синусоидальному закону. Для любого периодического процесса главной характеристикой является частота процесса. Частота определяет количество колебаний в единицу времени. Системной единицей частоты является 1 Герц - одно колебание в секунду. Таким образом значение 50 Гц означает, что за одну секунду направление и величина тока поменяется 50 раз. Такой стандарт напряжения сети принят в нашей стране и многих других. Существуют сети 60Гц, 400Гц.

    В бытовых электросетях используется переменный ток. Переменный ток, это когда периодически меняется полярность. Частота 50 или 60 герц, указывает на то, что полярность тока меняется соответствующее количество раз в секунду. Эта частота выбрана не случайно и она является единым стандартом в мире сегодня. На этой частоте оптимальны потери от сопротивления проводов. Вся аппаратура рассчитана на питание от переменного тока этой частоты. Если вдруг изменится частота, то аппаратура перестанет работать, а электродвигатели просто сгорят. Раньше важно было и напряжение в 220 вольт, но сегодня все рассчитано на больший разброс по напряжению. Но частота не должна выходить за пределы от 50 до 60 герц.

    Это частота. 1 Гц - 1 раз в секунду. 50 Гц - 50 раз в секунду, именно с такой частотой меняет направление переменный ток в российских розетках. В США - другие стандарты, там 60 Гц частота сети. Это не лучше и не хуже, просто другая.

    А ещ 50 Гц - это низкий такой, басовый звук. Через динамики ноутбука или дешевые наушники - не услышать.

    Это частота. Частота звука)Частота колебательной системы.

    Это говорит о том, что данные приборы необходимо включать в розетку с напряжением частоты в 50 Герц. Вообщем в стандартную квартирную розетку. 50 Герц - это частота, с которой в розетке меняется переменный ток.

    Это значит, что электроприбор рассчитан на электричество с колебаниями 50 000 раз в секунду.

    Так сколько раз появляется + на одном из двух проводах за одну секунду при 50 герцах? 50 или 25 раз?

Использование 60 Гц электродвигателей на 50 Гц. Стандарты IEC и NEMA .

NEMA - основной стандарт электрооборудования в Северной Америке. IEC стандарты существуют, как бы, «поверх» национальных. К примеру, в Германии действует VDE 0530; в Великобритании - BS 2613. Но они параллельны стандарту IEC 34-1. В целом, это же можно сказать о большинстве других стандартов в мире. Они похожи либо на клонов IEC либо, в лучшем случае, близкие производные от оного.

Более того: хотя NEMA и IEC и различны, они существенно совпадают в установленных номиналах и, для большинства распространенных применений, в серьезной мере взаимозаменяемы. В целом, NEMA может быть оценен, как более консервативный, дающий большую свободу конструкторам и практикам, что очень свойственно инженерным подходам в США. Наоборот, IEC более точен, более упорядочен, построен с существенно меньшим «Запасом прочности».

Как будет работать типичный трехфазный асинхронный мотор, сконструированный под 230/460 60Гц при частоте сети 50Гц. Таблица предполагает, что мотор нагружен на номинальную мощность при различных напряжениях частотой 50-Гц.

Напряжение

Частота, Гц

% момент при полной нагрузке

% синхронной скорости

%Ток полной нагрузки

% КПД при полной нагрузке

Косинус фи

Cos(φ )

начальный пусковой момент (электродвигателя), % от номинала

Опрокидывающий вращающий момент, % от номинала

Ток при заторможенном роторе, % от номинала

Тепловыделение, % от номинала

Магнитный шум

Незначит.

изменения

Чуть выше

Чуть выше

Значительно выше

Значительно выше

Не забудьте, что если электродвигатель машины был рассчитан на работу в сети 60Гц, а подключен к сети 50 Гц, то его скорость вращения составляет 5/6 от первоначальной (расчетной на сеть 60Гц).

В Европе и в большей части остального мира питающие сети придерживаются стандартной частоты 50Гц, в отличие от Северной Америки, где стандартной частотой является 60Гц. Что произойдет с мотором, если он сконструирован на одну частоту, а подключен к другой? Можно ли их безопасно эксплуатировать?

Трехфазные асинхронные электродвигатели: Электродвигатель, рассчитанный на 60Гц, будет успешно работать на номинальной мощности при 50Гц, если напряжение питания будет уменьшено на 1/6. Поэтому, электродвигатель номинала 230/460В, 60Гц подключенный на «звезду» 380В, 50Гц будет работать вполне успешно на полную номинальную нагрузку, хотя скорость вращения и будет составлять 5/6 от номинальной.

При подключении на 50Гц / 230В, для трехфазного асинхронного электродвигателя номинала 230/460В, 60Гц, следует принять коэффициент понижения мощности 0.80 to 0.85 для предотвращения перегрева на частоте 50Гц. Большинство производителей в Северной Америке либо указывают в каталогах, либо с удовольствием ответят на запрос о способности двигателя работать на частоте 50Гц и соответствующей данной частоте номинальной мощности. Не ленитесь спрашивать.

Пожалуйста, запомните, что наибольший вред причиняет нагрев.

Однофазные асинхронные электродвигатели. Для однофазного асинхронного электродвигателя на 60Гц, ответом на вопрос «Можно ли использовать его на 50Гц» , в общем случае будет: НЕ НАДО! Почему? Многие из однофазных моторов чувствительны к частоте сети при пуске. Для частных применений, производитель электродвигателей иногда может предложить электродвигатель, который будет работать и на 50Гц и на 60Гц.

Вывод. По возможности, пытайтесь купить электродвигатель на номинал Вашей сети.

Почему по сей день в энергетической отрасли для передачи и распределения электроэнергии всюду выбраны и остаются принятыми частоты 50 и 60 Гц? Вы когда-нибудь задумывались об этом? А ведь это совсем не случайно.

В странах Европы и СНГ принят стандарт 220-240 вольт 50 герц, в североамериканских странах и в США — 110-120 вольт 60 Гц, а в Бразилии 120, 127 и 220 вольт 60 Гц. Кстати, непосредственно в США в розетке порой может оказаться, скажем, 57 или 54 Гц. Откуда эти цифры?

Давайте обратимся к истории, чтобы разобраться в данной теме. Во второй половине 20 столетия ученые многих стран мира активно изучали электричество и искали ему практическое применение. Томас Эдисон изобрел свою первую лампочку, внедрив тем самым электрическое освещение. Возводились первые электростанции постоянного тока. Начало электрификации в США.

Первые лампы были дуговыми, они светились электрическим разрядом, горящим на открытом воздухе, зажигаемым между двумя угольными электродами. Экспериментаторы того времени довольно быстро установили, что именно при 45 вольтах дуга становится более устойчивой, однако для безопасного зажигания, последовательно с лампой подключали резистивный балласт, на котором падало в процессе работы лампы около 20 вольт.

Так, долгое время применялось постоянное напряжение 65 вольт. Затем его повысили до 110 вольт, чтобы можно было последовательно включить в сеть сразу две дуговые лампы.

Эдисон был фанатичным сторонником систем постоянного тока, и генераторы постоянного тока Эдисона поначалу так и работали, подавая в потребительские сети 110 вольт постоянного напряжения.

Но технология постоянного тока Эдисона была очень-очень затратной, экономически не выгодной: нужно было прокладывать много толстых проводов, да и передача от электростанции до потребителя не превышала расстояния в несколько сотен метров, поскольку потери при передаче были огромны.

Позже была введена трехпроводная система постоянного тока на 220 вольт (две параллельные линии по 110 вольт), однако существенно положение относительно экономичности такой передачи не улучшилось.

Позже разработал свои, совершенно новаторские генераторы переменного тока, и внедрил экономически более эффективную систему передачи электроэнергии при высоком напряжении в несколько тысяч вольт, и электроэнергию можно стало передавать на тысячи метров, потери при передаче снизились в десятки раз. Постоянный ток Эдисона не выдержал конкуренции с переменным током Тесла.

Трансформаторы на железе понижали высокое напряжение до 127 вольт на каждой из трех фаз, подавая его потребителю в виде переменного тока. При работе генераторов переменного тока, приводимых в движение паром или падающей водой, роторы их вращались с частотой от 3000 оборотов в минуту и даже больше.

Это позволяло лампам не мерцать, асинхронным двигателям нормально работать, выдерживая номинальные обороты, а трансформаторам — преобразовывать электричество, повышать и понижать напряжение.

Между тем, в СССР напряжение сетей до 60-х годов оставалось на уровне 127 вольт, затем с ростом производственных мощностей его подняли до привычных нам теперь 220 вольт.

Доливо-Добровольский, так же как и Тесла, исследовавший возможности переменного тока, предложил использовать для передачи электроэнергии именно синусоидальный ток, а частоту предложил установить в пределах от 30 до 40 герц. Позже сошлись на 50 герцах в СССР и на 60 герцах — в США. Эти частоты были оптимальными для оборудования переменного тока, во всю работавшего на многих заводах.

Частота вращения двухполюсного генератора переменного тока составляет 3000 либо максимум 3600 оборотов в минуту, и дает как раз частоты 50 и 60 Гц при генерации. Для нормальной работы генератора переменного тока, частота должна быть не менее 50-60 Гц. Промышленные трансформаторы без проблем преобразуют переменный ток данной частоты.

Сегодня принципиально можно повысить частоту передачи электроэнергии до многих килогерц, и сэкономить таким образом на материалах проводников в ЛЭП, однако инфраструктура остается приспособленной именно для тока частотой 50 Гц, она была так спроектирована изначально по всему миру, генераторы на атомных электростанциях вращаются с все той же частотой 3000 оборотов в минуту, имеют всё ту же пару полюсов. Поэтому модификация систем генерации, передачи и распределения электроэнергии - вопрос отдаленного будущего. Вот почему 220 вольт 50 герц остаются у нас пока стандартом.

Андрей Повный

Время Мск Частота, Гц
01-09-2019 00:00 50.03
01-09-2019 01:00 50.00
01-09-2019 02:00 49.97
01-09-2019 03:00 49.97
01-09-2019 04:00 49.99
01-09-2019 05:00 50.01
01-09-2019 06:00 50.02
01-09-2019 07:00 49.99
01-09-2019 08:00 50.00
01-09-2019 09:00 50.02
01-09-2019 10:00 50.01
01-09-2019 11:00 50.01
01-09-2019 12:00 50.02
01-09-2019 13:00 49.99
01-09-2019 14:00 50.03
01-09-2019 15:00 49.98
  • Сохранить в формате csv
  • Сохранить в формате xml

Информация о частоте электрического тока в ЕЭС России, публикуемая ОАО «СО ЕЭС» в соответствии с Постановлением Правительства Российской Федерации от 21.01.2004 № 24 «Об утверждении стандартов раскрытия информации субъектами оптового и розничных рынков электрической энергии» (в редакции Постановлений Правительства Российской Федерации от 21.04.2009 № 334 и от 09.08.2010 № 609), размещена в подразделе «Информация о значении частоты электрического тока в ЕЭС России » раздела «Раскрытие информации о функционировании ЕЭС России »

О частоте в Единой энергетической системе России

Частота электрического тока является одним из показателей качества электрической энергии и важнейшим параметром режима энергосистемы. Значение частоты показывает текущее состояние баланса генерируемой и потребляемой активной мощности в энергосистеме. Работа Единой энергосистемы России планируется для номинальной частоты – 50 герц (Гц). Непрерывность производства электроэнергии, отсутствие возможности запасать энергию в промышленных масштабах и постоянное изменение объемов потребления требуют настолько же непрерывного контроля за соответствием количества произведенной и потребленной электроэнергии. Показателем, характеризующим точность этого соответствия, является частота.

При ведении режима ЕЭС, постоянно возникают колебания баланса мощности в основном из-за нестабильности потребления, а также (гораздо реже) при отключениях генерирующего оборудования, линий электропередачи и других элементов энергосистемы. Указанные отклонения баланса мощности приводят к отклонениям частоты от номинального уровня.

Повышенный уровень частоты в энергосистеме относительно номинальной означает избыток генерируемой активной мощности относительно потребления энергосистемы, и наоборот, пониженный уровень частоты означает недостаток генерируемой активной мощности относительно потребления.

Таким образом, регулирование режима энергосистемы по частоте заключается в постоянном поддержании планового баланса мощности путем ручного или автоматического (а чаще и того, и другого одновременно) изменения нагрузки генераторов электростанций таким образом, чтобы частота все время оставалась близкой к номинальной. При аварийных ситуациях, когда резервов генерирующего оборудования электростанций недостаточно, для восстановления допустимого уровня частоты, может применяться ограничение нагрузки потребителей.

Регулирование частоты электрического тока в ЕЭС России осуществляется в соответствии с требованиями, установленными Стандартом ОАО «СО ЕЭС» СТО 59012820.27.100.003-2012 «Регулирование частоты и перетоков активной мощности в ЕЭС России. Нормы и требования» (в редакции от 31.01.2017) и национальным стандартом Российской Федерации ГОСТ Р 55890-2013 «Единая энергетическая система и изолированно работающие энергосистемы. Оперативно-диспетчерское управление. Регулирование частоты и перетоков активной мощности. Нормы и требования» (далее – Стандарты).

Согласно указанным Стандартам, в первой синхронной зоне ЕЭС России должно быть обеспечено поддержание усредненных на 20-секундном временном интервале значений частоты в пределах (50,00±0,05) Гц при допустимости нахождения значений частоты в пределах (50,0±0,2) Гц с восстановлением частоты до уровня (50,00±0,05) Гц за время не более 15 минут. Высокие требования к поддержанию частоты обусловлены необходимостью согласования отклонений частоты с планируемыми запасами пропускной способности контролируемых сечений ЕЭС в нормальных условиях. Для ЕЭС России, характеризующейся протяженными межсистемными связями, входящими в контролируемые сечения, более жесткие нормативы по поддержанию частоты и, соответственно, баланса мощности, позволяют максимально использовать пропускную способность этих связей.

Все вращающиеся механизмы в синхронно работающих частях энергосистемы (турбины, генераторы, двигатели и т.д.) имеют номинальные проектные обороты, пропорциональные номинальной частоте в сети. Известно, что номинальный режим работы всех вращающихся механизмов является наиболее эффективным с точки зрения их экономичности, надежности и долговечности. Отклонение от номинальных оборотов вращения приводит к нежелательным эффектам в работе оборудования электростанций и потребителей (возникновение повышенных вибраций, износа и т.д.), снижению их экономичности и надежности. Для разного оборудования существуют предельно допустимые отклонения частоты от номинальной. Поддержание частоты на уровне близком к номинальному обеспечивает максимальную экономичность работы энергетического оборудования и максимальный запас надежности работы энергосистем.

Резонансный метод измерения частот.

Метод сравнения частот;

Метод дискретного счета основывается на подсчете импульсов необходимой частоты за конкретный промежуток времени. Его наиболее часто используют цифровые частотомеры, и именно благодаря этому простому методу можно получить довольно точные данные.


Более подробно о частоте переменного тока Вы можете узнать из видео:

Метод перезаряда конденсатора тоже не несет в себе сложных вычислений. В этом случае среднее значение силы тока перезаряда пропорционально соотносится с частотой, и измеряется при помощи магнитоэлектрического амперметра. Шкала прибора, в таком случае, градуируется в Герцах.

Погрешность подобных частотомеров находится в пределах 2%, и поэтому такие измерения вполне пригодны для бытового использования.

Способ измерения базируется на электрическом резонансе, возникающем в контуре с подстраиваемыми элементами. Частота, которую необходимо измерить, определяется по специальной шкале самого механизма подстройки.

Такой метод дает очень низкую погрешность, однако применяется только для частот больше 50 кГц.

Метод сравнения частот применяется в осциллографах, и основан на смешении эталонной частоты с измеряемой. При этом возникают биения определенной частоты. Когда же этих биений достигает нуля, то измеряемая становится равной эталонной. Далее, по полученной на экране фигуре с применением формул можно рассчитать искомую частоту электрического тока.

Ещё одно интересное видео о частоте переменного тока:

 

 

Это интересно: