→ Амплитудные и фазовые спектры сигналов. Спектром сигнала называется совокупность гармонических колебаний, из которых состоит сам сигнал - документ Амплитудный и фазовый спектр ряда фурье

Амплитудные и фазовые спектры сигналов. Спектром сигнала называется совокупность гармонических колебаний, из которых состоит сам сигнал - документ Амплитудный и фазовый спектр ряда фурье

Каждый сигнал имеет своё представление, свой образ в частотной области.

Этот образ называется СПЕКТРОМ сигнала. Слово спектр происходит от латинского spectrum, что в буквальном переводе и означает представление, образ.

Например, гармонический сигнал вида S(t) = A sin (ωt+φ) представляется в частотной области единственным значением на оси частот.

Рис 3. Спектр синусоидального сигнала.

В математике известна теорема, носящая имя великого французского математика Жана Фурье, согласно которой любой периодический сигнал с периодом T может быть представлен рядом Фурье (гармоническим рядом).

Другими словами можно сказать, любой, самый сложный периодический сигнал можно представить совокупностью простых гармонических сигналов.

Возьмём, например, последовательность прямоугольных импульсов, длительность которых равна половине периода (такой сигнал называется МЕАНДР), а частота равна 50Гц. (рис 4.) Форма этого сигнала не очень похожа на синусоиду, коротая показана ниже вместе со своим спектром. Далее, на рис. 4в. показана основная гармоника на частоте 50 Гц, синусоида с частотой в три раза большей (150 Гц). но меньшей амплитуды и результат сложения этих двух сигналов. Видим, он по форме уже напоминает прямоугольные импульсы. Далее, на рис 4г., к первой и третьей гармоникам добавлена пятая, на частоте 250 Гц. Результат их сложения ещё более похож на исходный сигнал и так далее, чем больше гармоник мы будем суммировать, тем большую степень приближения к прямоугольным импульсам мы получим.

Рис. 4.Спектральный состав последовательности прямоугольных импульсов.

Аналитическая запись рассмотренного разложения имеет вид:

Чем больше сигнал отличается от гармонического, тем больше частотных составляющих в его спектральном представлении и тем меньше расстояние (разнос частот) между ними, т.е. шире спектр такого сигнала. На рис.5.показана синусоида ограниченная сверху и снизу т.е. несколько искажённая, а на рис.6 показан её спектр. Видим, спектр имеет высшие гармоники различной амплитуды.

Таким образом, любое изменение формы сигнала неизбежно ведёт к изменению его спектра, и наоборот, любое изменение спектра сигнала приводит к изменению его спектра. Связь между временным и частотным представлением сигнала даёт теорема Фурье.

8. Преобразование Фурье. Прямое и обратное преобразование Фурье. Понятие амплитудного и фазового спектра сигнала.

Спектральный анализ - один из методов обработки сигналов, который позволяет охарактеризовать частотный состав измеряемого сигнала. Преобразование Фурье является математической основой, которая связывает временной или пространственный сигнал (или же некоторую модель этого сигнала) с его представлением в частотной области. Важную роль в спектральном анализе играют методы статистики, поскольку сигналы, как правило, имеют случайный характер или зашумлены при распространении или измерении. Если бы основные статистические характеристики сигнала были точно известны, или их можно было определить по конечному интервалу этого сигнала, то спектральный анализ представлял бы собой отрасль "точной науки". Однако, в действительности по отрезку сигнала можно получить только оценку его спектра. Поэтому практика спектрального анализа - некое ремесло (или искусство?) достаточно субъективного характера. Различие между спектральными оценками, получаемыми в результате обработки одного и того же отрезка сигнала разными методами, можно объяснить различием допущений, принятых относительно данных, различными способами усреднения и т.п. Если априори характеристики сигнала не известны, нельзя сказать какие из оценок лучше.

Преобразование Фурье - математическая основа спектрального анализа.

Пара преобразований Фурье. Спектральная плотность сигнала

Пусть сигнал s (t ) задан в виде непериодической функции, причем он существует только на интервале (t 1 ,t 2) (пример - одиночный импульс). Выберем произвольный отрезок времени T , включающий в себя интервал (t 1 ,t 2) (см. рис.1).

Обозначим периодический сигнал, полученный из s (t ), в виде s T (t ). Тогда для него можно записать ряд Фурье

где

Подставим выражение для в ряд:

Для того, чтобы перейти к функции s (t ) следует в выражении s T (t ) устремить период к бесконечности. При этом число гармонических составляющих с частотами =n 2 /T будет бесконечно велико, расстояние между ними будет стремиться к нулю (к бесконечно малой величине: , амплитуды составляющих также будут бесконечно малы. Поэтому говорить о спектре такого сигнала уже нельзя, т.к. спектр становитсясплошным .

При предельном переходе в случае Т  , имеем:

Таким образом, в пределе получаем

Внутренний интеграл является функцией частоты. Его называют спектральной плотностью сигнала, или частотной характеристикой сигнала и обозначают ,

рямое (*) и обратное (**) преобразования Фурье вместе называют парой преобразований Фурье. Модуль спектральной плотности определяет амплитудно-частотную характеристику (АЧХ) сигнала, а ее аргументназывают фазо-частотной характеристикой (ФЧХ) сигнала. АЧХ сигнала является четной функцией, а ФЧХ - нечетной.

Смысл модуля S () определяется как амплитуда сигнала (тока или напряжения), приходящаяся на 1 Гц в бесконечно узкой полосе частот, которая включает в себя рассматриваемую частоту . Его размерность - [сигнал/частота].

9. Свойства преобразования Фурье. Свойства линейности, изменения масштаба времени, другие. Теореме о спектре производной. Теорема о спектре интеграла.

10. Дискретное преобразование Фурье. Помехи радиоприёму. Классификация помех.

Дискретное преобразование Фурье может быть получено непосредственно из интегрального преобразования дискретизаций аргументов (t k = kt, f n = nf):

S(f) =s(t) exp(-j2ft) dt, S(f n) = ts(t k) exp(-j2f n kt), (6.1.1)

s(t) =S(f) exp(j2ft) df, s(t k) = fS(f n) exp(j2nft k). (6.1.2)

Напомним, что дискретизация функции по времени приводит к периодизации ее спектра, а дискретизация спектра по частоте - к периодизации функции. Не следует также забывать, что значения (6.1.1) числового ряда S(f n) являются дискретизаций непрерывной функции S"(f) спектра дискретной функции s(t k), равно как и значения (6.1.2) числового ряда s(t k) являются дискретизацией непрерывной функции s"(t), и при восстановлении этих непрерывных функций S"(f) и s"(t) по их дискретным отсчетам соответствие S"(f) = S(f) и s"(t) = s(t) гарантировано только при выполнении теоремы Котельникова-Шеннона.

Для дискретных преобразований s(kt)  S(nf), и функция, и ее спектр дискретны и периодичны, а числовые массивы их представления соответствуют заданию на главных периодах Т = Nt (от 0 до Т или от -Т/2 до Т/2), и 2f N = Nf (от -f N до f N), где N – количество отсчетов, при этом:

f = 1/T = 1/(Nt), t = 1/2f N = 1/(Nf), tf = 1/N, N = 2Tf N . (6.1.3)

Соотношения (6.1.3) являются условиями информационной равноценности динамической и частотной форм представления дискретных сигналов. Другими словами: число отсчетов функции и ее спектра должны быть одинаковыми. Но каждый отсчет комплексного спектра представляется двумя вещественными числами и, соответственно, число отсчетов комплексного спектра в 2 раза больше отсчетов функции? Это так. Однако представление спектра в комплексной форме - не более чем удобное математическое представление спектральной функции, реальные отсчеты которой образуются сложением двух сопряженных комплексных отсчетов, а полная информация о спектре функции в комплексной форме заключена только в одной его половине - отсчетах действительной и мнимой части комплексных чисел в частотном интервале от 0 до f N , т.к. информация второй половины диапазона от 0 до -f N является сопряженной с первой половиной и никакой дополнительной информации не несет.

При дискретном представлении сигналов аргумент t k обычно проставляется номерами отсчетов k (по умолчанию t = 1, k = 0,1,…N-1), а преобразования Фурье выполняются по аргументу n (номер шага по частоте) на главных периодах. При значениях N, кратных 2:

S(f n)  S n = s k exp(-j2kn/N), n = -N/2,…,0,…,N/2. (6.1.4)

s(t k)  s k = (1/N)S n exp(j2kn/N), k = 0,1,…,N-1. (6.1.5)

Главный период спектра в (6.1.4) для циклических частот от -0.5 до 0.5, для угловых частот от - до . При нечетном значении N границы главного периода по частоте (значения f N) находятся на половину шага по частоте за отсчетами (N/2) и, соответственно, верхний предел суммирования в (6.1.5) устанавливается равным N/2.

В вычислительных операциях на ЭВМ для исключения отрицательных частотных аргументов (отрицательных значений номеров n) и использования идентичных алгоритмов прямого и обратного преобразования Фурье главный период спектра обычно принимается в интервале от 0 до 2f N (0  n  N), а суммирование в (6.1.5) производится соответственно от 0 до N-1. При этом следует учитывать, что комплексно сопряженным отсчетам S n * интервала (-N,0) двустороннего спектра в интервале 0-2f N соответствуют отсчеты S N+1- n (т.е. сопряженными отсчетами в интервале 0-2f N являются отсчеты S n и S N+1- n).

Пример: На интервале Т= ,N=100, задан дискретный сигналs(k) =(k-i) - прямоугольный импульс с единичными значениями на точкахkот 3 до 8. Форма сигнала и модуль его спектра в главном частотном диапазоне, вычисленного по формулеS(n) =s(k)exp(-j2kn/100) с нумерацией поnот -50 до +50 с шагом по частоте, соответственно,=2/100, приведены на рис. 6.1.1.

Рис. 6.1.1. Дискретный сигнал и модуль его спектра.

На рис. 6.1.2 приведена огибающая значений другой формы представления главного диапазона спектра. Независимо от формы представления спектр периодичен, в чем нетрудно убедиться, если вычислить значения спектра для большего интервала аргумента nс сохранением того же шага по частоте, как это показано на рис. 6.1.3 для огибающей значений спектра.

Рис. 6.1.2. Модуль спектра. Рис. 6.1.3. Модуль спектра.

На рис. 6.1.4. показано обратное преобразование Фурье для дискретного спектра, выполненное по формуле s"(k) =(1/100)S(n)exp(j2kn/100), которое показывает периодизацию исходной функцииs(k), но главный периодk={0,99} этой функции полностью совпадает с исходным сигналомs(k).

Рис. 6.1.4. Обратное преобразование Фурье.

Преобразования (6.1.4-6.1.5) называют дискретными преобразованиями Фурье (ДПФ). Для ДПФ, в принципе, справедливы все свойства интегральных преобразований Фурье, однако при этом следует учитывать периодичность дискретных функций и спектров. Произведению спектров двух дискретных функций (при выполнении каких-либо операций при обработке сигналов в частотном представлении, как, например, фильтрации сигналов непосредственно в частотной форме) будет соответствовать свертка периодизированных функций во временном представлении (и наоборот). Такая свертка называется циклической (см. раздел 6.4) и ее результаты на концевых участках информационных интервалов могут существенно отличаться от свертки финитных дискретных функций (линейной свертки).

Из выражений ДПФ можно видеть, что для вычисления каждой гармоники нужно N операций комплексного умножения и сложения и соответственно N 2 операций на полное выполнение ДПФ. При больших объемах массивов данных это может приводить к существенным временным затратам. Ускорение вычислений достигается при использовании быстрого преобразования Фурье.

Помехами обычно называют посторонние электрические возмущения, накладывающиеся на передаваемый сигнал и затрудняющие его прием. При большой интенсивности помех прием становится практически невозможным.

Классификация помех:

а) помехи от соседних радиопередатчиков (станций);

б) помехи от промышленных установок;

в) атмосферные помехи (грозы, осадки);

г) помехи, обусловленные прохождением электромагнитных волн через слои атмосферы: тропосферу, ионосферу;

д) тепловые и дробовые шумы в элементах радиоцепей, обусловленные тепловым движением электронов.

Математически сигнал на входе приемника можно представить либо в виде суммы передаваемого сигнала и помехи, и тогда помеху называют аддитивной , либо простошумом , либо в виде произведения передаваемого сигнала и помехи, и тогда такую помеху называютмультипликативной . Эта помеха приводит к значительным изменениям интенсивности сигнала на входе приемника и объясняет такие явления какзамирания .

Наличие помех затрудняет прием сигналов при большой интенсивности помех, распознавание сигнала может стать практически невозможным. Способность системы противостоять мешающему воздействию помехи носит название помехоустойчивости .

Внешние естественные активные помехи представляют собой шумы, возникающие в результате радиоизлучения земной поверхности и космических объектов, работы других радиоэлектронных средств. Комплекс мероприятий, направленных на уменьшение влияния взаимных помех РЭС, называется электомагнитной совместимостью. Этот комплекс включает в себя как технические меры совершенствования радиоаппаратуры, выбор формы сигнала и способа его обработки, так и организационные меры: регламентация частоты, разнесение РЭС в пространстве, нормирование уровня внеполосных и побочных излучений и др.

11. Дискретизация непрерывных сигналов. Теорема Котельникова (отсчётов). Понятие частоты Найквиста. Понятие интервала дискретизации.

Дискретизация аналоговых сигналов. Ряд Котельникова

Всякое непрерывное сообщение s(t) , занимающее конечный интервал времени Т с , может быть передано с достаточной точностью конечным числом N отсчетов (выборок) s(nT) , т.е. последовательностью коротких импульсов, разделенных паузой.

Дискретизация сообщений по времени – процедура, состоящая в замене несчетного множества мгновенных значений сигнала их счетным (дискретным) множеством, которое содержит информацию о значениях непрерывного сигнала в определенные моменты времени.

При дискретном способе передачи непрерывного сообщения можно сократить время, в течение которого канал связи занят передачей этого сообщения, с Т с до , где- длительность импульса, применяемого для передачи выборки; можно осуществить одновременную передачу по каналу связи нескольких сообщений (временное уплотнение сигналов).

Наиболее простым является способ дискретизации, основанный на теореме В.А. Котельникова, сформулированной для сигналов с ограниченным спектром (теорема отсчетов):

если наивысшая частота в спектре функции s(t) меньше, чем F m , то функция s(t) полностью определяется последовательностью своих значений в моменты, отстоящие друг от друга не более, чем на секунд и может быть представлена рядом:

.

Здесь величина обозначает интервал между отсчетами на оси времени, а

Время выборки, - значение сигнала в момент отсчета.

Ряд (1) называется рядом Котельникова, а выборки (отсчеты) сигнала {s(nT) } иногда называют временным спектром сигнала.

обладает следующими свойствами:

а) в точке t=nT функция равна 1, т.к. в этой точке аргумент функции равен 0, а значение ее равно 1;

б) в точках t=kT , функция, т.к. аргумент синуса в этих точках равен, а сам синус равен нулю;

в) спектральная плотность функции u n (nT) равномерна в полосе частот и равна. Этот вывод сделан на основе теоремы взаимности частоты и времени пары преобразований Фурье. ФЧХ спектральной плотности линейна и равна(в соответствии с теоремой о сдвиге сигнала). Таким образом,

.

Временное и частотное представления функции u n (t) даны на рис.3.

Графическая интерпретация ряда Котельникова представлена на рис.4.

Ряд Котельникова (1) обладает всеми свойствами обобщенного ряда Фурье с базисными функциями u n (nT) , и поэтому определяет функцию s(t) не только в точках отсчета, но и в любой момент времени.

Интервал ортогональности функции u n равен бесконечности. Квадрат нормы

Коэффициенты ряда, определяемые по общей формуле для ряда Фурье, равны (с использованием равенства Парсеваля):

следовательно

При ограничении спектра сигнала конечной наивысшей частотой ряд (1) сходится к функции s(t) при любом значении t .

Если взять интервал Т между выборками меньшим, чем , то ширина спектра базисной функции будет больше ширины спектра сигнала, следовательно точность воспроизведения сигнала будет выше, особенно в случаях когда спектр сигнала не ограничен по частоте и наивысшую частотуF m приходится выбирать из энергетических или информационных соображений, оставляя неучтенными “хвосты” спектра сигнала.

При увеличении расстояния между выборками () спектр базисной функции становится уже спектра сигнала, коэффициентыC n будут являться выборками другой функции s 1 (t) , спектр которой ограничен частотой .

Если длительность сигнала T c конечна, то полоса его частот равна строго бесконечности, т.к. условия конечных длительности и полосы несовместимы. Однако практически всегда можно выбрать наивысшую частоту так, чтобы “хвосты” содержали либо малую долю энергии, либо слабо влияли на форму аналогового сигнала. При таком допущении число отсчетов N на времени Т с будет равно Т с , т.е. N=2F m T c . Ряд (1) в этом случае имеет пределы 0, N .

Число N иногда называют числом степеней свободы сигнала, или базой сигнала. С увеличением базы точность восстановления аналогового сигнала из дискретного увеличивается.

12. Временные и частотные характеристики линейных радиотехнических цепей. Понятие импульсной характеристики. Понятие переходной характеристики. Понятие входной и передаточной частотной характеристики.

При рассмотрении радиотехнических сигналов было установлено, что сигнал может быть представлен как во временной (динамическое представление), так и в частотной(спектральное представление) областях. Очевидно, при анализе процессов преобразования сигналов цепи также должны иметь соответствующие описания временными или частотными характеристиками.

Начнём с рассмотрения временных характеристик линейных цепей с постоянными параметрами. Если линейная цепь осуществляет преобразование в соответствии с оператором и на вход цепи подаётся сигналв виде дельта-функции (на практике очень короткий импульс), то выходной сигнал (реакция цепи)

называется импульсной характеристикой цепи. Импульсная характеристика составляет основу одного из методов анализа преобразования сигналов, который будет рассмотрен ниже.

Если на вход линейной цепи поступает сигнал , т.е. сигнал вида “единичный перепад”, то выходной сигнал цепи

называется переходной характеристикой .

Между импульсом и переходной характеристикой существует однозначная связь. Так как дельта-функция (см. подраздел 1.3):

,

то подставляя это выражение в (5.5), получим:

В свою очередь переходная характеристика

. (5.8)

Перейдём к рассмотрению частотных характеристик линейных цепей. Применим к входному и выходномусигналам прямое преобразование Фурье

Отношение комплексного спектра выходного сигнала к комплексному спектру входного сигнала называется комплексным коэффициентом передачи

(5.9)

Из этого следует, что

Таким образом, оператором преобразования сигнала линейной цепью в частотной области служит комплексный коэффициент передачи.

Представим комплексный коэффициент передачи в виде

где исоответственно модуль и аргумент комплексной функции. Модуль комплексного коэффициента передачикак функция частоты называетсяамплитудно-частотной характеристикой (АЧХ), а аргумент –фазочастотной характеристикой (ФЧХ). Амплитудно-частотная характеристика является чётной , а фазочастотная характеристика – нечётной функцией частоты .

Врменные и частотные характеристики линейных цепей связаны между собой преобразованием Фурье

что вполне объяснимо, поскольку они описывают один и тот же объект – линейную цепь.

13. Анализ воздействия детерминированных сигналов на линейные цепи с постоянными параметрами. Временной, частотный, операторный методы.

Огибающая АЧС последовательности прямоугольных видеоим-пульсов описывается функцией

и пересекает ось частот, когда х кратно л, т. е. п кратно q, τ. е. при частотах, кратных скважности. Поэтому именно эти частоты, равные

отсутствуют в спектре.

Обычно при построении спектров откладывают относительные

величины, т. е. и получают

относительный или нормированный спектр (рис. 15.6).

Спектральные составляющие с наибольшей амплитудой распо-ложены под первыми арками, в них сосредоточена и основная часть энергии сигнала. Поэтому эффективную ширину спектра можно определить как:

Теоретически ширина спектра бесконечна, однако не все его составляющие оказывают действенное влияние на форму сигнала и имеют практическое значение. Поэтому под шириной спектра обычно понимают ограниченный диапазон частот, внутри которого распределена большая часть энергии сигнала. Ширина спектра, так же как, например, полоса пропускания контура, — понятие условное.

Рассмотрим особенности АЧС при изменении длительности и частоты следования импульсов (рис, 15.7).

С уменьшением частоты следования Ω при t И = const происхо-дит сгущение спектра: расстояние между спектральными линиями уменьшается. Ширина спектра, определяемая его огибающей, не меняется, а основная часть энергии распределяется на большем числе гармоник.

С увеличением длительности импульсов при Ω= const ширина арок и связанная с ней ширина спектра уменьшаются: происходит относительное сжатие спектра. Основная часть энергии распреде-ляется на меньшем числе гармоник и сосредоточивается в области все более низких частот.

Таким образом, чем короче импульсы и больше их скважность, тем шире и гуще их спектр, и наоборот.

На практике часто приходится учитывать в спектре лишь ко-нечное число гармоник. Точность аппроксимации исходной функ-ции в этом случае зависит от числа учтенных гармоник. Она ока-зывается достаточной, если учитываются все гармоники, опреде-ляемые заданной шириной спектра.

Фазо-частотный спектр

Как следует из выражений (15.24) и (15.25) начальные фазы гармоник определяются как:

Отсюда следует, что огибающая ФЧС представляет собой пря-мую с углом наклона α, зависящим от сдвига импульсов. Учет из-менения от арки к арке фазы гармоник на я осуществляется соот-ветствующим смещением этой прямой параллельно себе на π вверх или вниз (рис. 15.8).

Каждая арка АЧС имеет ширину, равную qΩ. Поэтому вели-чина сдвига фазы на одну арку составляет угол:

. (15.28)

Поэтому угол наклона α огибающей ФЧС, как это следует и из рис. 15.9, равен арктангенсу от величины сдвига импульсов:


Чем больше сдвиг импульсов во времени, тем больше наклон огибающей их ФЧС (рис. 15.9). При t 0 = 0 угол α равен нулю.

Симметричные частотные спектры имеют аналогичный вид, но построение спектральных линий на них распространяется на ось отрицательных частот. При этом АЧС и ФЧС оказываются симмет-ричными относительно оси ординат и начала отсчета соответ-ственно (рис. 15.10).

Решение.

1. Расстояние между спектральными линиями, равное частоте следования импульсов:

2. Ширина арки:

3. Количество спектральных линий под каждой аркой:

4. Сдвиг фазы на одну арку:

Постоянная составляющая:

6. Т абличные значения функции соответствующие частотам F, 2F, 3F и рассчитанные с их помощью амплитуды и начальные фазы гармоник:

В спектре отсутствуют гармоники, кратные q = 5, т. е. 5F = 50 кГц, lOF = 100 кГц, 15F = 150 кГц и т. д.

СПЕКТРЫ ПЕРИОДИЧЕСКОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ПРЯМОУГОЛЬНЫХ РАДИОИМПУЛЬСОВ

Рассчитаем спектр симметричной относительно оси ординат последовательности прямоугольных радиоимпульсов (рис. 15.11):

Здесь и Ω — период и частота следования импульсов;

ω H — несущая частота.

Если несущая частота кратна частоте следования, т. е. ω H = kΩ, где k — целое число, то импульсы называются когерентными, если эти частоты некратны (), то импульсы — некогерентные.

С помощью выражения (15.4) находим постоянную состав-ляющую

В силу симметрии функции относительно оси ординат ряд Фурье будет содержать лишь косинусоиды (b n = 0 ).

Отсюда следует, что амплитуды гармонических составляющих резко возрастают в районе значений частот, близких к ω н, т. е. .По в этом районе значений п второе слагаемое в выражении (15. 32) значительно меньше первого, и им можно прене-бречь. Кроме того, так как ω H >Ω, постоянной составляющей можно также практически пренебречь.

Таким образом, при сделанных допущениях

Отсюда следует, что огибающая АЧС последовательности пря-моугольных радиоимпульсов определяется, так же как и для по-следовательности аналогичных видеоимпульсов, функцией . Разница лишь в том, что эта функция сдвинута по оси частот на величину , а ее максимум вдвое меньше и соответ-ствует частоте . (рис. 15.12).

В спектре некогерентной последовательности радиоимпульсов несущая частота сон отсутствует, и наибольшую ампли-туду имеет составляющая с частотой, близкой к . Если импульсы когерентны, то в их спектре присутствует составляющая несущей частоты, имеющая наибольшую амплитуду, равную (рис. 15.13).

Таким образом, спектр последовательности прямоугольных ра-диоимпульсов совпадает со спектром последовательности прямоугольных видеоимпульсов, смещенным вправо по оси частот на величину ω н. При этом часть спектра, лежащая в области ω<ω н, является зеркальным отображением части спектра, лежащего в области ω> ω н. Сделанные выводы тем точнее, чем ω н >Ω,

При комплексной форме ряда Фурье и построении симметричных спек-тров п принимает не только положительные, но и отрицательные значения. При отрицательных п в формуле (15.32) нельзя пренебречь вторым слагаемым, так как в районе частот , оно становится, наоборот, значительно больше первого слагаемого.

Наиболее эффективные спектральные составляющие, имеющие наибольшие амплитуды, у радиоимпульсов сосредоточены вблизи несущей частоты. Эффективная ширина спектра радиоимпульсов в два раза больше, чем у одинаковых по длительности видеоим-пульсов.

Пример 15.2.

Построить AЧC периодической последовательности прямоугольных радио-импульсов, если U m = 100 мВ; f H =250 МГц; кГц; t И = 100 мкс.

1. Скважность импульсов:

2. Ширина малых арок и половины большой арки:

3. Максимальная ордината огибающей спектра:

4. Так как f H кратно F, импульсы когерентны, основная спектральная со-ставляющая имеет частоту, равную f H = 250 МГц.

В спектре, показанном на рис. 15.13, присутствуют частоты:

отсутствуют частоты:

Амплитуды соответствующих гармоник могут быть непосредственно отсчи-таны из графика как ординаты огибающей, взятые при соответствующих ча-стотах.

СВЯЗЬ МЕЖДУ ФОРМОЙ СИГНАЛА И ЕГО СПЕКТРОМ

Форма сигнала в полной мере определяется лишь совокупно-стью двух его спектров: АЧС и ФЧС. Тем не менее можно устано-вить ряд характерных связей между формой сигнала и парамет-рами его АЧС, которые позволяют на практике, имея АЧС, судить о форме сигнала, и наоборот.

Сравнивая спектры прямоугольных и треугольных импульсов, заметим, что ряд Фурье в случае треугольных импульсов сходится быстрее, чем в случае прямоугольных импульсов, так как ампли-туды гармоник убывают быстрее с ростом их номера (табл. 15.1). Закономерность, по которой уменьшаются амплитуды гармоник с ростом их номера, можно выразить через число раз дифферен-цирования исследуемой функции, необходимое для "выделения из нее дельта-функций. Пусть в k-й производной исследуемой функ-ции появляются дельта-функции. Тогда для коэффициентов Фурье имеют силу неравенства:

где М — постоянная, зависящая от формы сигнала.

Скорость убывания амплитуд гармоник в спектре зависит от структурных свойств сигнала: коэффициенты убывают тем быст-рее, чем более «гладкой» является форма сигнала и его производ-ных. Если сигнал имеет скачкообразные переходы (его функция имеет конечные разрывы) и в его первой производной появляются δ(t)-импульсы, то амплитуды гармоник в его спектре стремятся к нулю очень медленно — порядок 1/п; если"же в пределах пе-риода следования сигнал непрерывен, но в его первой производ-ной имеются конечные разрывы, а во второй — δ(t)-импульсы, то амплитуды его гармоник стремятся к нулю быстрее—порядок не ниже 1/n 2 и τ. д. .Чем быстрее убывают коэффициенты Фурье, чем более «гладкая» форма сигнала, тем меньше ширина его спектра. В пределе имеет место наиболее «гладкое» моногармоническое колебание.

Понятие длительности определено лишь для прямоугольных и сходных с ними импульсов. На практике длительность импульса произвольной формы, так же как и ширину спектра сигнала, определяют энергетическим методом, т. е. как интервал времени, внутри которого сосредоточена большая часть его энергии, на-пример 90%. Ширина спектра импульсов получается тем больше, чем меньше длительность импульсов.

Важным свойством АЧС сиг-нала является то, что произведение длительности импульса на ширину спектра есть величина постоянная для импульсов данной формы:

Это свойство присуще спектрам любых сигналов и играет су-щественную роль при выборе их параметров.

Уменьшение длительности радиолокационных импульсов, на-пример, позволяет увеличить точность определения координат цели. Однако увеличение при этом ширины спектра сигнала за-трудняет обеспечение требуемой помехозащищенности радиопри-емных устройств. Такая противоречивость следует из усло-вия (15.35). Поэтому желательно выбирать такую форму импуль-сов, чтобы произведение имело наименьшую величину. Ана-лиз показывает, что это произведение получается меньше для тех импульсов, которые изменяются во времени более плавно, форма которых более «гладкая». Наименьшая его величина, весьма близ-кая к теоретически достижимому минимуму, получается у коло-колообразных импульсов.

В соответствии со спектральным способом анализа прохождения сигналов через линейные цепи любой случайный сигнал S (T ) можно представить в виде бесконечной суммы элементарных аналитически однотипных детерминированных сигналов :

(2.8)

Подавая на вход линейной цепи (рис. 1.14), коэффициент передачи которой равен , элементарный детерминированный сигнал, можно найти элементарный отклик цепи, то есть сигнал на выходе цепи.

Рис.2.3. К определению сигнала на выходе линейной цепи.

Сигнал на выходе линейной цепи равен

(2.9)

Поскольку для линейных цепей справедлив принцип суперпозиции, то результирующий отклик будет равен:

(2.10)

Функции, описывающие элементарные сигналы, называются базисными функциями. Представление сигнала базисными функциями упрощается, если они являются ортогональными и ортонормированными.

Набор функций называется ортогональным, Если в интервале от до

при (2.11)

И ортонормированным, Если для всех Выполняется условие

. (2.12)

Ортогональность базисных функций, с помощью которых представляется исходный сигнал , является гарантией того, что представление сигнала может быть сделано единственным образом. Условию ортогональности отвечают гармонические функции кратных частот, а также функции Уолша, которые на отрезке своего существования от до принимают лишь значения, равные 1, дискретные сигналы Баркера и некоторые другие функции. Спектральный метод анализа сигналов основан на преобразованиях Фурье и состоит в замене сложной функции времени, описывающей сигнал, суммой простых гармонических сигналов, образующих частотный спектр этого сигнала. Знаменитый французский физик и математик Ж. Б. Фурье (1768 – 1830 г. г.) доказал, что любое изменение во времени некоторой функции можно аппроксимировать в виде конечной или бесконечной суммы ряда гармонических колебаний с разными амплитудами, частотами и начальными фазами. Этой функцией может быть ток или напряжение в электрической цепи.

Рассмотрим вначале представление периодического электрического сигнала (рис. 2.4), отвечающего условию

, (2.13)

где: — период сигнала; =1,2,3,….

Рис. 2.4. Периодический сигнал

Представим этот сигнал бесконечным тригонометрическим рядом:

Этот ряд называется рядом Фурье.

Возможна запись ряда Фурье в другом виде:

, (2.15)

Где: — модуль амплитуд гармоник;

— фазы гармоник;

— круговая частота;

— коэффициенты косинусоидальных составляющих; — коэффициенты синусоидальных составляющих; — среднее значение сигнала за период (постоянная составляющая).

Отдельные слагаемые рядов называют гармониками. Число является номером гармоники. Совокупность величин в ряде (2.15) называют спектром амплитуд, а совокупность величин — спектром фаз.

Ниже на рис. 2.5 представлены амплитудный и фазовый спектры периодического сигнала. Вертикальные отрезки амплитудного спектра представляют амплитуды гармоник и называются спектральными линиями.

Рис 2.5. Амплитудный и фазовый спектры периодического сигнала

Таким образом, спектр периодического сигналаЛинейчатый. Каждый периодический сигнал имеет вполне определенные амплитудный и фазовый спектры.

Сумма ряда (2.15) является бесконечной, но, начиная с некоторого номера, амплитуды гармоник настолько малы, что ими можно пренебречь и практически реальный периодический сигнал представляется функцией с ограниченным спектром. Интервал частот, соответствующий ограниченному спектру, называется шириной спектра.

Если функция , описывающая периодический сигнал, является четной, то сумма ряда (2.14) будет содержать только косинусоидальные составляющие. Если — нечетная функция, то сумма будет содержать только синусоидальные составляющие.

Возможно также представление периодического сигнала в виде комплексного ряда Фурье:

, (2.16)

— комплексные амплитуды спектра, содержащие информацию, как об амплитудном, так и о фазовом спектрах.

После подстановки значений и , получим:

(2.17)

Если подставить полученное значение в ряд (1.29), то он обращается в тождество. Таким образом, периодический электрический сигнал можно задавать либо функцией времени , либо комплексной амплитудой спектра.

2.2.1. Спектр периодической последовательности прямоугольных импульсов

Состав спектра периодической последовательности прямоугольных импульсов зависит от величины отношения периода последовательности к длительности импульса, называемого скважностью импульсов. В спектре будут отсутствовать гармоники с номерами кратными скважности импульсов. Скважность импульсов равна . На рис.1.17 приведены три импульсные последовательности с разными скважностями и соответствующие им спектры. Для периодической последовательности, скважность которой равна 2, в спектре отсутствуют 2, 4, 6 ,8 и т. д. гармоники. Для последовательности, скважность которой равна 3, в спектре отсутствуют 3, 6 и т. д. гармоники. Для последовательности, скважность которой равна 4, в спектре отсутствуют 4, 8 и т. д. гармоники. Во всех приведенных спектрах интервал между спектральными линиями равен величине обратной периоду последовательности. Точки на оси частот, в которых спектр равен нулю, соответствуют величине, обратной длительности импульсов периодических последовательностей.

Рис.2.6 .Периодические последовательности импульсов и их спектры.

2.2.2. Спектр непериодического сигнала

При рассмотрении спектра непериодического сигнала воспользуемся предельным переходом от периодического сигнала к непериодическому сигналу, устремив период к бесконечности.

Для периодического сигнала, представленного на рис. 2.4, ранее получено выражение (2.17) для комплексной амплитуды спектра:

(2.18)

Введем обозначение:

(2.19)

Построим модуль спектра :


Рис. 2.7. Модуль спектра периодического сигнала

Расстояние между спектральными линиями равно . Если увеличивать период , то будет уменьшаться интервал w1 . При интервал между спектральными линиями w1® dw. При этом периодическая последовательность импульсов превращается в одиночный импульс и модуль спектра стремится к непрерывной функции частоты . В результате предельного перехода от периодического сигнала к непериодическому линейчатый спектр вырождается в сплошной спектр, представленный на рис. 2.8.

Рис. 2.8. Спектр непериодического сигнала

При этом комплексная амплитуда равна:

. (2.20)

С учетом предельного перехода при

(2.21)

Подставим полученное выражение в ряд (2.16). При этом сумма трансформируется в интеграл, а значения дискретных частот в значение текущей частоты и непериодический сигнал можно представить в следующем виде:

. (2.22)

Это выражение соответствует обратному преобразованию Фурье. Огибающая сплошного спектра одиночного импульса совпадает с огибающей линейчатого спектра периодической функции, представляющей периодическое повторение этого импульса.

Интеграл Фурье позволяет любую непериодическую функцию представить в виде суммы бесконечного числа синусоидальных колебаний с бесконечно малыми амплитудами и бесконечно малым интервалом по частоте. Спектр сигнала определяется из выражения

Этот интеграл соответствует прямому преобразованию Фурье.

– комплексный спектр, в нём содержится информация, как о спектре амплитуд, так и о спектре фаз.

Таким образом, спектр непериодической функции сплошной. Можно сказать, что в нём содержатся «все» частоты. Если вырезать из сплошного спектра малый интервал частот , то частоты спектральных составляющих в этом участке будут отличаться сколь угодно мало. Поэтому спектральные составляющие можно складывать так, как будто все они имеют одну и ту же частоту и одинаковые комплексные амплитуды. Спектральная плотность есть отношение комплексной амплитуды малого интервала частот к величине этого интервала.

Спектральный анализ сигналов имеет фундаментальное значение в радиоэлектронике. Информация о спектре сигнала позволяет обоснованно выбирать полосу пропускания устройств, на которые воздействует этот сигнал.

2.2.3. Спектр одиночного прямоугольного видеоимпульса

Рассчитаем спектр одиночного прямоугольного импульса, амплитуда которого равна Е , а длительность — t, представленного на рис. 2.9.

Рис. 2.9. Одиночный прямоугольный импульс

В соответствии с выражением (2.24) спектр такого сигнала равен

=. (2.24)

Поскольку = 0 , когда , то частоты, на которых спектр обращается в нуль равны , где K =1,2,3…

На рис. 2.10 представлен комплексный спектр одиночного прямоугольного импульса длительностью .

Рис.2.10. Спектр одиночного прямоугольного импульса

Спектральная плотность определяет распределение энергии в спектре одиночного импульса. В общем случае распределение энергии неоднородно. Однородное распределение характерно для хаотического процесса, называемого «белым шумом».

Спектральная плотность импульса на нулевой частоте равна его площади. Приблизительно 90% энергии одиночного прямоугольного импульса сосредоточено в спектре, ширина которого определяется выражением

Соотношение (1.41) определяет требования к ширине полосы пропускания радиотехнического устройства. В задачах, где форма сигнала имеет второстепенное значение полосу пропускания устройства для этого сигнала можно выбрать равной ширине первого лепестка спектра. При этом неизвестна степень искажения формы сигнала. Двукратное увеличение полосы пропускания лишь на 5% увеличит энергию сигнала при одновременном возрастании уровня шумов.

Всякий периодический сигнал воздействия f(t) – может быть представлен бесконечной суммой синусоид кратных частот – рядом Фурье:

,
(12)

Периодическая функция времени обладает свойством повторения формы через минимальный промежуток времени T, называемый периодом функции:

.

Период определяет частоту основной гармоники бесконечной суммы, которой кратны все слагаемые:

.

Коэффициенты ряда (12) определяются по формулам Фурье:

(13)

Объединение синуса и косинуса одной частоты в выражение (12) дает другую форму ряда Фурье:

(14)

где
,
.

В теории цепей удобнее использовать комплексную форму ряда Фурье:

(15)

здесь комплексная амплитуда к-й гармоник

;

, (16)

где

С учетом выражений (14) и (15) можно получить выражение (17):

(17)

Вещественность
означает, что ряд состоит только из косинусных гармоник, а функция времени является четной.

Амплитудный спектр:

, (18)

число гармоник на интервале между двумя узлами равно отношению
, называемого скважностью импульсов.

На вход ARC - фильтра будем действовать периодическим сигналом прямоугольной формы, имеющего следующие характеристики:

Скважность: S = 3

Амплитуда, В: U = 8

Порядок Фурье: n = 4

Будем исследовать реакцию фильтр при воздействие на него сигнала частотой лежащей в полосе пропускания. Для этого выберем частоту сигнала воздействия
, где
- резонансная частота данного фильтра. Отсюда частота сигнала воздействия
Гц.

1.Суммирование функций и построение графика суммы.

Рассмотрим разложение в усеченный ряд Фурье периодической последовательности импульсов со скважностью s и числом слагаемых N:

Для построения графика суммы воспользуемся компьютерной программой MathCAD:

2.Амплитудный спектр воздействия.

3.Фазный спектр воздействия.

      . Рассчитаем амплитудный и фазный спектры реакции:

В пункте 1.3 были получены амплитудный и фазовый спектры сигнала воздействия. Определим, какова будет реакция исследуемого ARC – фильтра, если на его вход воздействовать периодическим сигналом (см. п.п. 1.3).

1. Амплитудный спектр реакции:

Рис. 6 График амплитудного спектра реакции.

Из графика видно, что при k=2 наблюдается максимальная пропускная способность фильтра. Это обусловлено тем, что   к где   частота основной гармоники.

2. Фазный спектр реакции:

Рис. 8 Фазный спектр реакции.

1.5. Построим график функции времени реакции цепи на заданное воздействие:

По амплитудному и фазному спектрам (см. п.п. 1.3) можно построить соответствующую им функцию времени по формулам (14).

Для построения графика функции времени воспользуемся компьютерной программой MathCAD:

Рис.9. График функции времени.

На Рис. 9 представлены графики сигналов воздействия () и реакции () ARC – фильтра.

1.6. Рассчитаем и построим графики амплитудного и фазного спектров воздействия и реакции, а также временные функции воздействия и реакции с периодом в два раза больше.

В п.п. 1.3. – 1.4 мы исследовали реакцию фильтра при воздействие на него периодическим сигналом, частотой
, где- резонансная частота данногоARC - фильтра. По условию данного пункта примем частоту сигнала воздействия
.

График суммы:

Рис. 10. График суммы.

Амплитудный спектр воздействия.

Рис. 4 Амплитудный спектр воздействия.

Амплитудный спектр реакции имеет следующий вид:

Рис. 11Амплитудный спектр реакции.

Фазный спектр воздействия.

Рис. 5 Фазный спектр воздействия.

Фазный спектр реакции имеет следующий вид:

Рис. 12 Фазный спектр реакции

Временные функции:

Рис.13 График функции времени.

Не так давно товарищ , как с помощью спектрального анализа можно разложить некоторый звуковой сигнал на слагающие его ноты. Давайте немного абстрагируемся от звука и положим, что у нас есть некоторый оцифрованный сигнал, спектральный состав которого мы хотим определить, и достаточно точно.

Под катом краткий обзор метода выделения гармоник из произвольного сигнала с помощью цифрового гетеродинирования, и немного особой, Фурье-магии.

Итак, что имеем.
Файл с отсчетами оцифрованного сигнала. Известно, что сигнал представляет собой сумму синусоид со своими частотами, амплитудами и начальными фазами, и, возможно, белый шум.

Что будем делать.
Использовать спектральный анализ для того, чтобы определить:

  • количество гармоник в составе сигнала, а для каждой: амплитуду, частоту (далее в контексте числа длин волн на длину сигнала), начальную фазу;
  • наличие/отсутствие белого шума, а при наличии, его СКО (среднеквадратическое отклонение);
  • наличие/отсутствие постоянной составляющей сигнала;
  • всё это оформить в красивенький PDF отчёт с блэкджеком и иллюстрациями.

Будем решать данную задачу на Java.

Матчасть

Как я уже говорил, структура сигнала заведомо известна: это сумма синусоид и какая-то шумовая составляющая. Так сложилось, что для анализа периодических сигналов в инженерной практике широко используют мощный математический аппарат, именуемый в общем «Фурье-анализ» . Давайте кратенько разберём, что же это за зверь такой.
Немного особой, Фурье-магии
Не так давно, в 19 веке, французский математик Жан Батист Жозеф Фурье показал, что любую функцию, удовлетворяющую некоторым условиям (непрерывность во времени, периодичность, удовлетворение условиям Дирихле) можно разложить в ряд, который в дальнейшем получил его имя - ряд Фурье .

В инженерной практике разложение периодических функций в ряд Фурье широко используется, например, в задачах теории цепей: несинусоидальное входное воздействие раскладывают на сумму синусоидальных и рассчитывают необходимые параметры цепей, например, по методу наложения.

Существует несколько возможных вариантов записи коэффициентов ряда Фурье, нам же лишь необходимо знать суть.
Разложение в ряд Фурье позволяет разложить непрерывную функцию в сумму других непрерывных функций. И в общем случае, ряд будет иметь бесконечное количество членов.

Дальнейшим усовершенствованием подхода Фурье является интегральное преобразование его же имени. Преобразование Фурье .
В отличие от ряда Фурье, преобразование Фурье раскладывает функцию не по дискретным частотам (набор частот ряда Фурье, по которым происходит разложение, вообще говоря, дискретный), а по непрерывным.
Давайте взглянем на то, как соотносятся коэффициенты ряда Фурье и результат преобразования Фурье, именуемый, собственно, спектром .
Небольшое отступление: спектр преобразования Фурье - в общем случае, функция комплексная, описывающая комплексные амплитуды соответствующих гармоник. Т.е., значения спектра - это комплексные числа, чьи модули являются амплитудами соответствующих частот, а аргументы - соответствующими начальными фазами. На практике, рассматривают отдельно амплитудный спектр и фазовый спектр .


Рис. 1. Соответствие ряда Фурье и преобразования Фурье на примере амплитудного спектра.

Легко видно, что коэффициенты ряда Фурье являются ни чем иным, как значениями преобразования Фурье в дискретные моменты времени.

Однако, преобразование Фурье сопоставляет непрерывной во времени, бесконечной функции другую, непрерывную по частоте, бесконечную функцию - спектр. Как быть, если у нас нет бесконечной во времени функции, а есть лишь какая-то записанная её дискретная во времени часть? Ответ на этот вопрос даёт дальнейшей развитие преобразования Фурье - дискретное преобразование Фурье (ДПФ) .

Дискретное преобразование Фурье призвано решить проблему необходимости непрерывности и бесконечности во времени сигнала. По сути, мы полагаем, что вырезали какую-то часть бесконечного сигнала, а всю остальную временную область считаем этот сигнал нулевым.

Математически это означает, что, имея исследуемую бесконечную во времени функцию f(t), мы умножаем ее на некоторую оконную функцию w(t), которая обращается в ноль везде, кроме интересующего нас интервала времени.

Если «выходом» классического преобразования Фурье является спектр – функция, то «выходом» дискретного преобразования Фурье является дискретный спектр. И на вход тоже подаются отсчёты дискретного сигнала.

Остальные свойства преобразования Фурье не изменяются: о них можно прочитать в соответствующей литературе.

Нам же нужно лишь знать о Фурье-образе синусоидального сигнала, который мы и будем стараться отыскать в нашем спектре. В общем случае, это пара дельта-функций, симметричная относительно нулевой частоты в частотной области.


Рис. 2. Амплитудный спектр синусоидального сигнала.

Я уже упомянул, что, вообще говоря, мы рассматриваем не исходную функцию, а некоторое её произведение с оконной функцией. Тогда, если спектр исходной функции - F(w), а оконной W(w), то спектром произведения будет такая неприятная операция, как свёртка этих двух спектров (F*W)(w) (Теорема о свёртке).

На практике это означает, что вместо дельта-функции, в спектре мы увидим что-то вроде этого:


Рис. 3. Эффект растекания спектра.

Этот эффект именуют также растеканием спектра (англ. spectral leekage). А шумы, появляющиеся вследствие растекания спектра, соответственно, боковыми лепестками (англ. sidelobes).
Для борьбы с боковыми лепестками применяют другие, непрямоугольные оконные функции. Основной характеристикой «эффективности» оконной функции является уровень боковых лепестков (дБ). Сводная таблица уровней боковых лепестков для некоторых часто используемых оконных функций приведена ниже.

Основной проблемой в нашей задаче является то, что боковые лепестки могут маскировать другие гармоники, лежащие рядом.


Рис. 4. Отдельные спектры гармоник.

Видно, что при сложении приведённых спектров, более слабые гармоники как бы растворятся в более сильной.


Рис. 5. Чётко видна лишь одна гармоника. Нехорошо.

Другой подход к борьбе с растеканием спектра состоит в вычитании из сигнала гармоник, создающих это самое растекание.
То есть, установив амплитуду, частоту и начальную фазу гармоники, можно вычесть её из сигнала, при этом мы уберём и «дельта-функцию», соответствующую ей, а вместе с ней и боковые лепестки, порождаемые ей. Другой вопрос состоит в том, как же точно узнать параметры нужной гармоники. Недостаточно просто взять нужные данные из комплексной амплитуды. Комплексные амплитуды спектра сформированы по целым частотам, однако, ничто не мешает гармонике иметь и дробную частоту. В этом случае, комплексная амплитуда как бы расплывается между двумя соседними частотами, и точную её частоту, как и другие параметры, установить нельзя.

Для установления точной частоты и комплексной амплитуды нужной гармоники, мы воспользуемся приёмом, широко применяемым во многих отраслях инженерной практики – гетеродинирование .

Посмотрим, что получится, если умножить входной сигнал на комплексную гармонику Exp(I*w*t). Спектр сигнала сдвинется на величину w вправо.
Этим свойством мы и воспользуемся, сдвигая спектр нашего сигнала вправо, до тех пор, пока гармоника не станет ещё больше напоминать дельта-функцию (то есть, пока некоторое локальное отношение сигнал/шум не достигнет максимума). Тогда мы и сможем вычислить точную частоту нужной гармоники, как w 0 – w гет, и вычесть её из исходного сигнала для подавления эффекта растекания спектра.
Иллюстрация изменения спектра в зависимости от частоты гетеродина показана ниже.


Рис. 6. Вид амплитудного спектра в зависимости от частоты гетеродина.

Будем повторять описанные процедуры до тех пор, пока не вырежем все присутствующие гармоники, и спектр не будет напоминать нам спектр белого шума.

Затем, надо оценить СКО белого шума. Хитростей здесь нет: можно просто воспользоваться формулой для вычисления СКО:

Автоматизируй это

Пришло время для автоматизации выделения гармоник. Повторим ещё разочек алгоритм:

1. Ищем глобальный пик амплитудного спектра, выше некоторого порога k.
1.1 Если не нашли, заканчиваем
2. Варируя частоту гетеродина, ищем такое значение частоты, при которой будет достигаться максимум некоторого локального отношения сигнал/шум в некоторой окрестности пика
3. При необходимости, округляем значения амплитуды и фазы.
4. Вычитаем из сигнала гармонику с найденной частотой, амплитудой и фазой за вычетом частоты гетеродина.
5. Переходим к пункту 1.

Алгоритм не сложный, и единственный возникающий вопрос - откуда же брать значения порога, выше которого будем искать гармоники?
Для ответа на этот вопрос, следует оценить уровень шума еще до вырезания гармоник.

Построим функцию распределения (привет, мат. cтатистика), где по оси абсцисс будет амплитуда гармоник, а по оси ординат - количество гармоник, не превышающих по амплитуде это самое значение аргумента. Пример такой построенной функции:


Рис. 7. Функция распределения гармоник.

Теперь построим еще и функцию - плотность распределения. Т.е., значения конечных разностей от функции распределения.


Рис. 8. Плотность функции распределения гармоник.

Абсцисса максимума плотности распределения и является амплитудой гармоники, встречающейся в спектре наибольшее число раз. Отойдем от пика вправо на некоторое расстояние, и будем считать абсциссу этой точки оценкой уровня шума в нашем спектре. Вот теперь можно и автоматизировать.

Посмотреть на кусок кода, детектирующий гармоники в составе сигнала

public ArrayList detectHarmonics() { SignalCutter cutter = new SignalCutter(source, new Signal(source)); SynthesizableComplexExponent heterodinParameter = new SynthesizableComplexExponent(); heterodinParameter.setProperty("frequency", 0.0); Signal heterodin = new Signal(source.getLength()); Signal heterodinedSignal = new Signal(cutter.getCurrentSignal()); Spectrum spectrum = new Spectrum(heterodinedSignal); int harmonic; while ((harmonic = spectrum.detectStrongPeak(min)) != -1) { if (cutter.getCuttersCount() > 10) throw new RuntimeException("Unable to analyze signal! Try another parameters."); double heterodinSelected = 0.0; double signalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); for (double heterodinFrequency = -0.5; heterodinFrequency < (0.5 + heterodinAccuracy); heterodinFrequency += heterodinAccuracy) { heterodinParameter.setProperty("frequency", heterodinFrequency); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); double newSignalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); if (newSignalToNoise > signalToNoise) { signalToNoise = newSignalToNoise; heterodinSelected = heterodinFrequency; } } SynthesizableCosine parameter = new SynthesizableCosine(); heterodinParameter.setProperty("frequency", heterodinSelected); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); parameter.setProperty("amplitude", MathHelper.adaptiveRound(spectrum.getRealAmplitude(harmonic))); parameter.setProperty("frequency", harmonic - heterodinSelected); parameter.setProperty("phase", MathHelper.round(spectrum.getPhase(harmonic), 1)); cutter.addSignal(parameter); cutter.cutNext(); heterodinedSignal.set(cutter.getCurrentSignal()); spectrum.recalc(); } return cutter.getSignalsParameters(); }

Практическая часть

Я не претендую на звание эксперта Java, и представленное решение может быть сомнительным как по части производительности и потреблению памяти, так и в целом философии Java и философии ООП, как бы я ни старался сделать его лучше. Написано было за пару вечеров, как proof of concept. Желающие могут ознакомиться с исходным кодом на

 

 

Это интересно: