→ Принцип действия телеграфной связи. Буквопечатающий аппарат и многократное телеграфирование Влияние на общество

Принцип действия телеграфной связи. Буквопечатающий аппарат и многократное телеграфирование Влияние на общество

БУКВОПЕЧАТАЮЩИЕ ТЕЛЕГРАФНЫЕ АППАРАТЫ позволяют воспроизводить на бумажной ленте знаки не в виде азбуки Морзе (комбинация тире и точек), а обыкновенным типографским шрифтом, и притом со значительными, по сравнению с аппаратом Морзе, скоростями, все более и более возрастающими по мере усовершенствования (эти аппараты называются также быстродействующими телеграфными аппаратами). Буквопечатающие телеграфные аппараты по конструкции и способу действия весьма разнообразны. По способу передачи их можно разделить на два основных типа: а) с ручной (клавиатурной) передачей и б) с автоматической передачей - посредством предварительно перфорированной ленты. Наиболее употребительные в современной телеграфии аппараты называются большей частью по фамилиям их изобретателей. Ниже приводится краткое описание буквопечатающих телеграфных аппаратов, получивших распространение в СССР.

1) (фиг. 1).

В основу положен следующий принцип. В передающем и приемном аппаратах имеются типовые колеса, по ободу которых выгравированы буквы, цифры, знаки препинания. Типовые колеса приводятся во вращение часовым механизмом с равномерной скоростью, причем на передающем и приемном аппаратах одинаковые знаки находятся одновременно в нижнем положении. Синхронизм вращения поддерживается регулятором скорости R и специальным коррекционным устройством. Передающий механизм состоит из клавиатуры, коробки с болтиками и тележки с контактным приспособлением. Клавиатура имеет 28 клавишей - 14 белых и 14 черных, из которых на 26 изображены буквы и цифры; две свободные клавиши служат для перехода с букв на цифры (цифровой и буквенные бланки) и для получения интервалов между словами. Под клавишами находятся 28 рычагов hh 1 (фиг. 2), расположенных своими концами h 1 в коробке А по кругу.

На концы рычагов h 1 упираются болтики s, числом также 28; верхние концы болтиков проходят в отверстия крышки В и в спокойном положении находятся на ее уровне. В центре крышки расположен подшипник, в котором вращается приводимая в движение часовым механизмом ось тележки. Тележка состоит из вилки С, между концами которой расположен двуплечий рычаг G. Одно плечо его прикреплено к стальной муфте D, свободно надетой на ось, а другой имеет на конце стальную губу l, проходящую над серединой болтиков. Кроме того, к стальной муфте прикреплен рычаг К с контактным пером F, находящимся между двумя контактными винтами. В момент нажатия клавиши вращающаяся тележка наскакивает своей губой на головку болтика, выдвинутого рычагом соответствующей клавиши; вследствие этого муфта D опускается и тянет книзу правое плечо рычага К; левое его плечо своим пером соединяет батарею Е с линией L через верхний контакт (фиг. З).

(В момент покоя контактное перо F соединяет линию с электромагнитами приемного устройства аппарата.) Для восприятия переданного сигнала служат система электромагнитов, печатающие приспособления и приспособления для протягивания ленты. При прохождении тока через обмотки поляризованного электромагнита 1 (фиг. 4) якорь 2 отскакивает от полюсных надставок и с силой ударяет по ударному винту 3 спускового рычага 4.

Спусковой рычаг действует на храповое сцепление 5, которое приводит в движение печатающую ось 6. Эта последняя посредством улиткообразного эксцентрика 7 и рычага 8 прижимает ленту к типовому колесу 9. Часовой механизм аппарата Юза приводится в движение гирей или мотором.

2) (изобретен в Англии в 1867 г.) м. б. назван автоматическим Морзе, т. к. передаваемые и получаемые им буквы представляют сочетание точек и тире азбуки Морзе. Аппарат Уитстона состоит из следующих составных частей: а) перфоратора, для предварительного набора на ленту передаваемых телеграмм; б) трансмиттера, или передатчика, для посылки сигналов автоматическим путем посредством пропускания через него заготовленной заранее на перфораторе ленты, и в) ресивера, или приемника, для записи получаемых сигналов.

а) Перфоратор представлен на фиг. 5 с открытой передней крышкой. Впереди видны три кнопки, которые соединены рычагами с механизмом перфоратора, находящимся в задней части ящика.

Набор букв на ленту производится по азбуке Морзе, причем точки и тире изображаются комбинациями отверстий, пробиваемых на ленте особыми штифтами, или пуансонами (1, 2, 3, 4, 5), перфоратора. Для этой цели ударяют по кнопкам небольшими деревянными колотушками с каучуковыми наконечниками. При ударе по левой кнопке, соответствующей точке, на ленте пробиваются сразу три отверстия: верхнее и нижнее большие - для посылки токов двух направлений, и среднее малое - для передвижения ленты зубчатым колесом передатчика. При ударе по правой кнопке пробиваются сразу четыре отверстия: два больших наискось и два малых посредине. Средняя кнопка соответствует интервалу, и при ударе по ней пробивается одно отверстие среднего ряда. На фиг. 5 изображена лента с такого рода отверстиями: левый конец ее - с отдельно пробитыми комбинациями отверстий для точки и тире, а дальше вправо - с отверстиями для слова «Москва». Скорость набора телеграмм на ленту всецело зависит от искусства работника и максимально доходит до 200 букв в минуту.

б) Трансмиттер . На фиг. 6 показана схема трансмиттера Уитстона. Эбонитовое коромысло К, получая качательное движение от часового механизма, сообщает его токовращателю Т при помощи металлических штифтов 9 и 10 и рычагов 11 и 12, на длинных коленах которых прикреплены стальные иглы 13 и 14, прижатые для устойчивости пружинками 15 и 16 к винтам 17 и 18.

Короткие колена рычагов 11 и 12 имеют: правый - короткую 19, а левый - длинную 20 штанги, назначение которых - следовать под действием спиральной пружины 24 всем движениям коромысла и толкать токовращатель вправо и влево. Маленький каток 6 под действием пружины 7 давит на верхний конец токовращателя, скошенный на два ската, и завершает действие штанг 19 и 20, содействуя быстрым поворотам токовращателя и плотному контакту между его нижним концом и батарейными винтами Х 1 и X 2 . Перфорированная лента W движется над иглами т. о., что верхние концы их при поднятии входят в отверстия, каждая в свой крайний ряд, или задерживаются, если отверстий не встречают.

Передача точки . Правое плечо коромысла К поднимается кверху, за ним следует, под влиянием пружины 24, рычаг 12; задняя игла 13, поднимаясь, встречает в ленте отверстие, отчего штанга 19 переместит токовращатель вправо, нижний конец его коснется плюсового батарейного винта, и в линию начнется посылка плюса через ось токовращателя, все время соединенную с линией. Плюс на приемнике производит печатание. При следующем качании коромысла его левое плечо поднимается, с ним поднимается рычаг 11 с иглой 14, которая входит в отверстие нижнего ряда ленты, отчего штанга 20 переместит токовращатель к минусовому батарейному винту, и поэтому в линию будет посылаться минус, производящий на приемнике пробел.

Передача тире . Тире начинается, так же, как и точка, поднятием правого плеча коромысла, рычага 12 и иглы 13, и токовращатель посылает на линию плюс. При следующем качании коромысла поднимается его левое плечо, а вместе с ним рычаг 11 и игла 14, но последняя, не встретив на ленте отверстия, задержится; ее рычаг 11 также остановится, отделившись от штифта коромысла, и штанга 20 более не будет двигаться вправо, ее муфта не дойдет до нижнего конца токовращателя, и последний останется в положении, приданном ему первым качанием коромысла, т. е. посылка на линию плюса не прервется. При третьем качании будут явления первого качания, следовательно, в линию будет посылаться плюс непрерывно в течение трех качаний. Наконец, при четвертом качании коромысла игла 14, поднимаясь, уже встречает отверстие в нижнем ряду ленты, токовращатель перемещается, и в линию посылается минус. Если за этим между буквами или словами следует интервал, то иглы, попеременно поднимаясь, будут встречать только поверхность ленты, а, следовательно, токовращатель, оставаясь все время у минусового батарейного винта, будет посылать в линию минус, оставляющий на этом месте ленты приемника пробел.

Новейшие Уитстоновские передатчики могут давать скорость, соответствующую 10-236 точкам в сек.

в) Ресивер . Особенностью приемника аппарата Уитстона является реле Присса, у которого под действием сильного постоянного подковообразного магнита остаются поляризованными как оба конца сердечников их катушек, так и соответствующие им якоря. Благодаря этому приемник отличается весьма высокой чувствительностью и способностью к быстрой записи сигналов (приемник начинает действовать уже при силе тока в 1 mА). Если, например, ток положительного направления, пройдя через обмотки обеих катушек (фиг. 7), вызвал в верхних полюсных надставках S 1 и S 2: в левой - северная полярность и в правой - южную, а в нижних - наоборот, то левые надставки (нижняя и верхняя) будут размагничены, а правые сильнее намагничены, вследствие чего якоря n притянутся к правым надставкам.

По прекращении тока якоря останутся там же. При прохождении тока другого направления якоря притянутся к левым надставкам, и в этом случае на ленте происходит печатание получаемых сигналов знаками азбуки Морзе. Для этой цели на продолжении оси Н (фиг. 8) имеется изогнутая рукоятка I со стерженьком, который оканчивается печатающим колесиком m 1 .

Одновременно с поворотом колесика, действием часового механизма ресивера, диск m, погруженный в резервуар с краской, вращается в обратную сторону и смачивает краской колесико m 1 . Дальнейшим усовершенствованием аппарата Уитстона является буквопечатающий телеграфный аппарат Крида , у которого передающее устройство такое же, как и у Уитстона, приемное же изменено так, что позволяет получать телеграмму, напечатанную обыкновенным типографским шрифтом.

3) Буквопечатающий телеграфный аппарат Бодо изобретен французским телеграфным техником Жаном Бодо в 1874 г. Первый аппарат Бодо в СССР был установлен в 1904 г. между Ленинградом и Москвой. В настоящее время (1927 г.) на проводах СССР находится в действии свыше 200 комплектов буквопечатающих телеграфных аппаратов Бодо разных типов, отрабатывающих до 60% всей телеграфной корреспонденции. Главные составные части аппарата Бодо следующие: манипулятор, распределитель тока, приемный аппарат. Азбука Бодо - пятизначная и состоит из посылок в провод для каждой буквы, цифры или знака препинания пяти токов равной продолжительности, комбинируемых из двух полярностей: минуса (ток работы) и плюса (ток покоя). Например, буква А или цифра 1 выражается комбинацией -++++, буква Т (или Э) -+-+- и т. д. Когда желают послать к приемнику букву, предварительно посылают комбинацию ++++-, устанавливающую печатающий механизм приемного аппарата в такое положение, при котором печатаются буквы. Перед печатанием цифр посылают +++-+. Посылка комбинаций производится посредством клавиатуры манипулятора (фиг. 9, А), которая имеет 5 клавиш, разделенных выступом D на две группы 1, 2, 3 и 5, 4.

Клавиши имеют общую ось вращения 1 (фиг. 9, Б). Каждая клавиша в спокойном положении посылает на линию плюс от батареи Е 1 , у которой минус заземлен, а плюс подведен к задней контактной шине 4 клавиатуры. При нажатии клавиши ее контактная пружинка 3 переходит к передней шине 2, соединенной с минусом другой батареи Е 2 такого же напряжения, как и Е 1 , но с заземленным плюсом. Контактная пружина соединяется распределителем с линией. Нажатая комбинация клавиш автоматически задерживается в этом положении крючком 5 в течение целого оборота щеток распределителя и отпускается посредством тактового электромагнита Т, который поворачивает своим якорем 6 плоскую пружину 7, а с ней и ось 8 всех пяти блокирующих крючков. Одновременно с этим якорь 6, ударяясь о стержень 9, дает сигнал телеграфисту, который только после этого набирает следующую комбинацию. Назначение распределителя состоит в том, чтобы один и тот же провод по очереди предоставлять нескольким передатчикам и приемникам на одной оконечной станции. На другой оконечной станции имеется точно такой же распределитель. Оба распределителя вращаются синхронно. Распределители, смотря по системе, бывают: 2-, 4-, 6- и 8-кратные.

На фиг. 10 представлен диск двукратного распределителя. Он состоит из ряда контактных колец, по которым скользят контактные щетки а , прикрепленные к вращающемуся щеткодержателю.

Каждая пара щеток касается одновременно двух колец распределителя: одна пара - колец Iи IV, вторая - II и V и третья - III и VI. Щеткодержатель получает вращение от специального часового механизма с гирей. Для постоянства числа оборотов на оси посажен чувствительный регулятор скорости. В самом механизме имеется коррекционное приспособление и коррекционный электромагнит, поддерживающие синхронизм вращения двух оконечных распределителей. На фиг. 11 представлена схема двукратного аппарата Бодо с развернутыми кольцами распределителя.

I кольцо диска имеет 11 контактов, из которых 1-5 соединены с приемником Р 1 , 6-10 - с приемником Р 2 , а в 11 контакт включен коррекционный электромагнит К. II кольцо диска имеет 14 контактов: в 1-5 контакты включены клавиши манипулятора М 1 , а в 6-10 - клавиши манипулятора М 2 . III кольцо также имеет 14 контактов, из которых 3 и 12 соединены с тактовыми электромагнитами Т 1 и Т 2 манипуляторов М 1 и М 2 , а 1, 2 и 6, 7 с тормозными электромагнитами приемников Р 1 и Р 2 ; IV, V и VI кольца - сплошные. Передача и прием происходят т. о., что если с 6-10 контактов II кольца при пробегании по ним щеток V-II происходит передача от манипулятора М 2 комбинации (через щетки и V кольцо) в провод L, то на 1-5 контакты того же кольца происходит прием входящих посылок тока. Входящий линейный ток через V кольцо, щетки, II кольцо, заднюю шину манипулятора М 1 поступает в поляризованное реле R, которое замыкает местную батарею Е 3 на цепь: IV кольцо, щетки, I кольцо и электромагниты приемника, производя печатание соответствующего знака.

Приемник аппарата Бодо имеет 5 электромагнитов М (фиг. 12), якоря которых в момент прохождения токов нажимают на направляющие рычаги 11, находящиеся на общей оси.

Поворачиваясь, эти рычаги продвигают разведчики 12 с диска 13 (покоя) на диск 14 (рабочий). Оба диска снабжены по окружности треугольными вырезами, расположение которых соответствует комбинациям азбуки Бодо. На той же оси закреплено типовое колесо 15 с буквами и цифрами. Пять разведчиков, встречая на своем пути углубления вышеуказанных дисков, соответствующих посланной комбинации, попадают в них своими ножками и поворачиваются на некоторый угол, вследствие чего педаль Р (фиг. 13) поднимается и при обратном выталкивании разведчиков из углублений с силой ударяет по зацепному крючку 17, отпускающему печатный рычаг 18 с лентой, которая и получает от типового колеса требуемый знак.

После печатания лента автоматически протягивается на один знак. Приемник приводится в действие гирей и имеет регулятор скорости. Аппараты Бодо 4-кратные, 6-кратные и т. д. отличаются только в устройстве дисков распределителей. Весьма важными добавочными приборами к аппарату Бодо являются ретрансмиттеры, позволяющие устанавливать автоматический переприем корреспонденции оконечных станций и работу переприемного пункта с оконечными.

4) Буквопечатающий телеграфный аппарат Сименса был изобретен только в 1912 г. и уже получил чрезвычайно широкое распространение во всех странах. Он также состоит из 3 частей: а) перфоратора, б) передатчика и в) приемника.

а) Перфоратор . Текст телеграммы предварительно набирается на перфораторе, которому придана форма и расположение клавиатуры обыкновенной пишущей машинки (фиг. 14).

При нажатии клавиши на ленте пробивается (пробивными электрическими магнитами) ряд отверстий, соответствующих набираемому знаку (букве или цифре). Для каждого передаваемого знака употребляются 5 импульсов тока - положительного или отрицательного направления - в 32 комбинациях, как и у аппарата Бодо. На фиг. 15 показана лента буквопечатающего телеграфного аппарата Сименса. Отверстию в бумажной ленте соответствует отрицательный импульс тока, а целому месту соответствует положительный импульс тока.

б) Передатчик (фиг. 16) приводится в действие электродвигателем (200-1000 об/мин.), причем скорость работы зависит от электрических свойств провода и объема корреспонденции (за каждый оборот передается один знак).

Вставленная в аппарат лента проходит через контактное приспособление с рычажками (наподобие игл в аппарате Уитстона), причем в момент прохождения отверстия над соответствующим рычажком в провод посылается отрицательный импульс тока; когда же над рычажком проходит не пробитое место ленты, в провод посылается положительный импульс (фиг. 17).

Эта комбинация токов производит в приемнике (фиг. 18) печатание посланного знака, причем приемник должен вращаться синхронно с передатчиком. Синхронизм устанавливается особым приспособлением вполне автоматически в течение 10-30 сек. после пуска аппарата и затем поддерживается им во все время работы.

в) Приемник . Посылаемые передатчиком импульсы тока (фиг. 17, правая часть схемы) поступают в 5 поляризованных комбинаторных реле SR, которые приводят свои якоря в то или иное положение, смотря по направлению отдельных импульсов. Ось приемника, на которую насажено типовое колесо Т, приводимое в движение электромотором А, несет на себе также и контактные щетки с , соединенные попарно и движущиеся по контактным кольцам особого диска s . Кольца разделены по некоторой системе на сегменты, соединенные через один между собой и с контактами k пяти комбинаторных реле. Если пять якорей приняли положение, соответствующее передаваемому знаку, то его печатание произойдет в момент замыкания тока от местного источника В через соответствующие сегменты, щетки, контакты реле, их якоря и печатающий электромагнит М. Этот путь тока устанавливается в тот момент, когда передаваемая буква типового колеса проходит над печатающим электромагнитом. Ясно, что при каждом обороте щеток или устанавливаются якоря пяти комбинаторных реле или отпечатывается только одна буква. Поэтому в приемнике употребляют два комплекта комбинаторных реле; один из них при каждом обороте типового колеса находится в соединении с линией и, следовательно, с передатчиком, от которого он может принять комбинацию токов и расположить соответственно ей свои якоря, другой же комплект реле, бывший до того в соединении с линией, печатает предшествующую букву. Кроме того, можно включить в приемник и перфоратор, так что, кроме телеграммы, отпечатанной буквами, получится и перфорированная лента; последняя может быть пропущена через передатчик, установленный на другом проводе, что имеет большую выгоду при работе переприемных телеграфных контор.

Для аппарата Сименса необходим местный источник тока в 110 или в 220 V и 4-5 А, что является его единственным недостатком. Манипуляции на аппарате Сименса весьма просты и не требуют от телеграфиста продолжительной выучки. Буквопечатающий телеграфный аппарат Сименса работает дуплексом, причем в случае работы на далекое расстояние для него вполне применимы обыкновенные трансляции Уитстона.

Известно, что устойчивость работы телеграфных аппаратов измеряется продолжительностью посылки элементарного сигнала.

В таблице приведены для сравнения эти данные для аппаратов Бодо, Уитстона и Сименса.

Из таблицы видно, что устойчивость работы аппарата Сименса (продолжительность посылки элементарного сигнала) выше, чем у аппаратов Бодо и Уитстона. Это обстоятельство в отношении аппарата Уитстона следует приписать преимуществам алфавита Бодо над алфавитом Морзе; в отношении же аппарата Бодо - преимуществам примененной аппаратом Сименса коррекции.

ТЕЛЕГРАФЫ ЭЛЕКТРИЧЕСКИЕ II. 1. Электрический звонок. 2 и 3. Двойной изолятор для проводов. 4. Изолятор в железной оправе. 5. Звонок для переменных токов. 6. Соединение проводов. 7. Реле. 8. Пишущий телеграфный прибор, обыкновенный немецкий. 9. Сифонный отметчик Томсона. 10. Поляризованный пишущий телеграфный аппарат Сименса и Гальске. 11. Приемный аппарат Морзе. 12. Ключ Морзе.

Примитивные виды связи [ | ]

С незапамятных времён человечество пользовалось различными примитивными видами сигнализации и связи в целях сверхбыстрой передачи важной информации в тех случаях, когда по ряду причин традиционные виды почтовых сообщений не могли быть использованы. Огни, зажигаемые на возвышенных участках местности, или же дым от костров должен был оповестить о приближении врагов либо о грядущем стихийном бедствии. Этот способ до сих пор используется заблудившимися в тайге или туристами, испытывающими стихийное бедствие . Некоторые племена и народы использовали для этих целей определённые комбинации звуковых сигналов от ударных (например говорящие и др. барабаны) и духовых (охотничий рог) музыкальных инструментов, другие научились передавать определённые сообщения, манипулируя отражённым солнечным светом при помощи системы зеркал. В последнем случае система связи получила наименование «гелиограф », который является примитивным световым телеграфом.

Оптический телеграф [ | ]

Передача ом Морзе при помощи корабельного оптического телеграфа (лампы Ратьера)

Семафоры могли передавать информацию с большей точностью, чем дымовые сигналы и маяки. Кроме того, они не потребляли топлива. Сообщения можно было передавать быстрее, чем их могли передавать гонцы, и семафоры могли обеспечивать передачу сообщений по целому региону. Но, тем не менее, как и прочие способы передачи сигналов на расстояние, они сильно зависели от погодных условий и требовали дневного света (Практичное электроосвещение появилось только в 1880 году). Они нуждались в операторах, и башни должны были быть расположены на расстоянии 30 километров друг от друга. Это было полезно для правительства, но слишком дорого для использования в коммерческих целях. Изобретение электрического телеграфа позволило снизить стоимость отправки сообщений в тридцать раз, кроме того, его можно было использовать в любое время суток, независимо от погоды.

Электрический телеграф [ | ]

Схема электромеханического телеграфа

Одна из первых попыток создать средство связи с использованием электричества относится ко второй половине XVIII века, когда Ж.-Л. Лесаж в 1774 году построил в Женеве электростатический телеграф. В 1798 году испанский изобретатель Франциско де Сальва (d ) создал собственную конструкцию электростатического телеграфа. Позднее, в 1809 году немецкий учёный Самуил Томас Земмеринг построил и испытал электрохимический телеграф на пузырьках газа .

Основные телеграфные линии на 1891 год

Фототелеграф [ | ]

В 1843 году шотландский физик Александр Бейн продемонстрировал и запатентовал собственную конструкцию электрического телеграфа, которая позволяла передавать изображения по проводам. Аппарат Бейна считается первой примитивной факс -машиной.

В 1855 году итальянский изобретатель Джованни Казелли создал аналогичное устройство, которое назвал Пантелеграф и предложил его для коммерческого использования. Аппараты Казелли некоторое время использовались для передачи изображений посредством электрических сигналов на телеграфных линиях как во Франции, так и в России.

Аппарат Казелли передавал изображение текста, чертежа или рисунка, нарисованного на свинцовой фольге специальным изолирующим лаком. Контактный штифт скользил по этой совокупности перемежающихся участков с большой и малой электропроводностью, «считывая» элементы изображения. Передаваемый электрический сигнал записывался на приёмной стороне электрохимическим способом на увлажнённой бумаге, пропитанной раствором железосинеродистого калия (феррицианида калия). Аппараты Казелли использовались на линиях связи Москва-Петербург (1866-1868), Париж-Марсель и Париж-Лион .

Самые же совершенные из фототелеграфных аппаратов производили считывание изображения построчно фотоэлементом и световым пятном, которое обегало всю площадь оригинала. Световой поток, в зависимости от отражающей способности участка оригинала, воздействовал на фотоэлемент и преобразовывался им в электрический сигнал. По линии связи этот сигнал передавался на приёмный аппарат, в котором модулировался по интенсивности световой луч, синхронно и синфазно обегающий поверхность листа фотобумаги. После проявления фотобумаги на ней получалось изображение, являющееся копией передаваемого - фототелеграмма . Технология нашла широкое применение в новостной фотожурналистике . В 1935 году агентство «Ассошиэйтед Пресс » первым создало сеть корпунктов, оснащённых фототелеграфными аппаратами, способными передавать снимки на большие расстояния непосредственно с места событий . Советская «Фотохроника ТАСС » оснастила корпункты фототелеграфом в 1957 году, и переданные в центральный офис таким способом снимки подписывались «Телефото ТАСС» . Технология господствовала в доставке изображений вплоть до середины 1980-х годов, когда появились первые фильм-сканеры и видеофотоаппараты , а за ними - цифровая фототехника.

Беспроводной телеграф [ | ]

7 мая 1895 года российский учёный Александр Степанович Попов на заседании Русского Физико-Химического Общества продемонстрировал прибор, названный им «грозоотметчик », который был предназначен для регистрации радиоволн, генерируемых грозовым фронтом. Этот прибор считается первым в мире радиоприёмным устройством, пригодным для реализации беспроводного телеграфа. В 1897 году при помощи аппаратов беспроводной телеграфии Попов осуществил приём и передачу сообщений между берегом и военным судном. В 1899 году Попов сконструировал улучшенный вариант приёмника электромагнитных волн, где приём сигналов - ом Морзе - осуществлялся на наушники оператора - радиста. В 1900 году благодаря радиостанциям, построенным на острове Гогланд и на российской военно-морской базе в Котке под руководством Попова, были успешно осуществлены аварийно-спасательные работы на борту военного корабля «Генерал-адмирал Апраксин», севшего на мель у острова Гогланд. В результате обмена радиотелеграфными сообщениями экипажу российского ледокола «Ермак» была своевременно и точно передана информация о финских рыбаках, находящихся на оторвавшейся льдине в Финском заливе.

За рубежом техническая мысль в области беспроводной телеграфии также не стояла на месте. В 1896 году в Великобритании итальянец Гульельмо Маркони подал патент «об улучшениях, произведённых в аппарате беспроводной телеграфии». Аппарат, представленный Маркони, в общих чертах повторял конструкцию Попова, многократно к тому времени описанную в европейских научно-популярных журналах. В 1901 году Маркони добился устойчивой передачи сигнала беспроводного телеграфа (буквы S) через Атлантику .

Аппарат Бодо: новый этап развития телеграфии [ | ]

В 1872 году французский изобретатель Жан Бодо сконструировал телеграфный аппарат многократного действия, который имел возможность передавать по одному проводу два и более сообщения в одну сторону. Аппарат Бодо и созданные по его принципу получили название стартстопных. Кроме того, Бодо создал весьма удачный телеграфный ( Бодо), который впоследствии был воспринят повсеместно и получил наименование Международный телеграфный № 1 (ITA1). Модифицированная версия МТК № 1 получила название МТК № 2 (ITA2). В СССР на основе ITA2 был разработан телеграфный МТК-2 . Дальнейшие модификации конструкции стартстопного телеграфного аппарата, предложенного Бодо, привели к созданию телепринтеров (телетайпов). В честь Бодо была названа единица скорости передачи информации - бод .

Телекс [ | ]

Телекс Siemens T100

К 1930 году была создана конструкция стартстопного телеграфного аппарата, оснащённого дисковым номеронабирателем телефонного типа (телетайп). Этот тип телеграфного аппарата, в числе прочего, позволял персонифицировать абонентов телеграфной сети и осуществлять быстрое их соединение. Практически одновременно в Германии и Великобритании были созданы национальные сети абонентского телеграфа, получившие название Telex (TELEgraph + EXchange).

На основании международных соглашений 1930-х годов телекс-сообщение было признано документом, а телекс, соответственно, видом документальной связи.

В Казахстане услуги телеграфной связи физическим лицам не предоставляются с 1 января 2018 года. Для юридических лиц тарифы были изменены с 1 июля 2018 года, сейчас одно слово телеграммы стоит 675 тенге (1,8 USD). Рентабельность предоставления данной услуги оператором АО «Казактелеком» составила минус 92 процентов, что не подразумевает её дальнейшего развития .

В то же время, в Канаде, Германии, Швеции, Японии некоторые компании всё ещё предоставляют услуги по отправке и доставке традиционных телеграфных сообщений.

Влияние на общество [ | ]

Телеграфия способствовала росту организованности «на железных дорогах, объединила финансовые и товарные рынки, уменьшила стоимость [передачи] информации внутри и между предприятиями» . Рост делового сектора подстегнул общество к дальнейшему расширению использования телеграфа.

Внедрение телеграфии в мировом масштабе изменило подход к сбору информации для новостных репортажей. Сообщения и информация теперь распространялись далеко и широко и телеграф потребовал введения языка «свободного от локальных региональных и нелитературных аспектов», что привело к развитию и стандартизации мирового медиа-языка .

См. также [ | ]

Примечания [ | ]

  1. Каким был первый телеграф
  2. Скан патента (неопр.) .
  3. Фототелеграф - статья из Большой советской энциклопедии .
  4. Л.Я.Крауш. Фототелеграмма // Фотокинотехника: Энциклопедия / Гл. ред. Е. А. Иофис . - М. : Советская энциклопедия , 1981. - 447 с.
  5. Michael Zhang.

Телеграфный аппарат

аппарат для передачи и (или) приёма электрических телеграфных сигналов - для осуществления телеграфной связи (См. Телеграфная связь). Первый практически пригодный Т. а. (электромагнитного типа) изобрёл и продемонстрировал в действии (1832) П. Л. Шиллинг . На ранних этапах развития телеграфии кодированные сообщения передавались клавишным устройством или телеграфным ключом (См. Телеграфный ключ) и при приёме фиксировались в пишущем телеграфном аппарате (См. Пишущий телеграфный аппарат) в виде ломаной линии (например, Ондулятор ом) либо точек и тире (например, в Морзе аппарат е). В Уитстона телеграфном аппарате (См. Уитстона телеграфный аппарат) и Крида телеграфном аппарате (См. Крида телеграфный аппарат) принимаемые телеграфные сигналы регистрировались на перфорированной бумажной ленте; Т. а. Крида мог воспроизводить также и печатные знаки. Более совершенными оказались буквопечатающие телеграфные аппараты (См. Буквопечатающий телеграфный аппарат), к которым относятся Т. а. Якоби, Юза, Сименса, Многократный телеграфный аппарат Бодо и др. Кроме того, были сконструированы так называемые буквопишущие Т. а. Первые советские Т. а. были созданы А. П. Трусевичем (1921), В. И. Каупужем (1925), А. Ф. Шориным (1928); Т. а. последнего в 1929 был введён в эксплуатацию. Большой вклад в разработку и конструирование Т. а. внесли советские изобретатели и учёные Л. И. Тремль, С. И. Часовников, Е. А. Волков, Н. Г. Гагарин, А. Д. Игнатьев, Л. Н. Гурин, Г. П. Козлов, В. И. Керби и др.

Современные (середина 70-х гг. 20 в.) Т. а. подразделяются на аппараты неравномерного и равномерного кодов (см. Код телеграфный). Из-за низкой экономичности и малой пригодности для буквопечатающего (буквопечатного) приёма Т. а. неравномерного кода в телеграфии используются редко. В Т. а. равномерного кода любая кодовая комбинация содержит одинаковое количество элементов, что позволяет осуществлять буквопечатный приём. По способу передачи такие Т. а. подразделяются на стартстопные и синхронные (см, Стартстопный аппарат , Синхронный телеграфный аппарат).

Современный Т. а. обычно состоит из телеграфного передатчика (См. Телеграфный передатчик) и телеграфного приёмника (См. Телеграфный приёмник), питание устройств которых постоянным током осуществляется чаще всего от выпрямителей на 60 в , а переменным - непосредственно от электрической сети. Операции, выполняемые передатчиком: шифровка (шифрация) передаваемого знака (получение комбинации элементарных сигналов в соответствии с кодовой таблицей); преобразование параллельной кодовой комбинации в последовательную; включение в состав кодовой комбинации служебных сигналов для синхронизации и фазирования приёмника; передача в линию связи (См. Линия связи) последовательности электрических сигналов требуемой длительности и амплитуды. При работе передатчика (рис. 1 ) каждый знак, соответствующий передаваемому сообщению, от источника информации поступает в кодирующее устройство (шифратор), где он автоматически преобразуется в кодовую комбинацию, элементы которой, появляясь на выходе кодирующего устройства одновременно, следуют в наборное устройство. Передающий распределитель последовательно преобразует каждый элемент кодовой комбинации в электрический сигнал определённой длительности. Выходное устройство формирует электрические сигналы необходимой мощности, полярности и формы, а датчик выдаёт служебные элементы комбинаций. Привод определяет скорость телеграфирования. Метод передачи (стартстопный или синхронный) зависит от способа работы управляющего устройства.

Функции приёмника Т. а. (рис. 2 ) - приём электрических сигналов кодовой комбинации; определение полярности каждого элементарного сигнала; дешифровка (дешифрация) кодовой комбинации; отпечатывание принятого знака. Электрические сигналы кодовой комбинации поступают на входное устройство, которое определяет их полярность и исправляет искажения. Далее элементарные сигналы комбинации через приёмный распределитель направляются в наборное устройство, где они накапливаются и передаются в дешифратор. Сигналы с выхода дешифратора вводятся в печатающее устройство, которое записывает сообщение на бумажной ленте (в ленточном телеграфном аппарате (См. Ленточный телеграфный аппарат), например Телетайп е) или на рулоне (в рулонном телеграфном аппарате (См. Рулонный телеграфный аппарат)). Синхронизация и фазирование приёмника осуществляются совместно приёмным распределителем и управляющим устройством. Скорость работы приёмника определяется приводом.

В состав Т. а. могут входить также автоматизирующие приставки (реперфораторная, трансмиттерная), автоответчик и автостоп. Они позволяют автоматически передавать и принимать сообщения, проверять правильность установленного соединения, включать и выключать привод Т. а.

До середины 20 в. Т. а. оставались аппаратами с электромеханическим принципом действия. К 70-м гг. в СССР и ряде зарубежных стран налажен серийный выпуск электронно-механических Т. а. В таких аппаратах большинство устройств, как правило, выполняется на базе бесконтактных элементов, в том числе: в передатчике - кодирующее и выходное устройства, распределитель, привод, управляющее устройство, датчик служебных элементов; в приёмнике - входное и наборное устройства, распределитель, дешифратор. У электронно-механических Т. а. имеется по сравнению с электромеханическими ряд преимуществ: высокая скорость телеграфирования, больший срок службы, меньшая потребляемая мощность, возможность быстрого изменения скорости телеграфирования и типа используемого кода. Ведутся работы по созданию полностью электронных Т. а.

Лит.: Балагин И. Я., Кудряшов В. А., Семенюта Н. Ф., Передача дискретной информации и телеграфия, М., 1971; Принципы построения электронно-механических телеграфных аппаратов, М., 1973.

А. И. Кобленц.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

  • Телеграфный адрес
  • Телеграфный канал

Смотреть что такое "Телеграфный аппарат" в других словарях:

    ТЕЛЕГРАФНЫЙ АППАРАТ - ТЕЛЕГРАФНЫЙ аппарат, служит для передачи и (или) приема электрических телеграфных сигналов в процессе телеграфной связи. Обычно состоит из телеграфного передатчика и (или) телеграфного приемника. Наиболее распространен буквопечатающий телеграфный … Современная энциклопедия

    ТЕЛЕГРАФНЫЙ АППАРАТ - служит для передачи и (или) приема электрических телеграфных сигналов в процессе телеграфной связи. Обычно состоит из телеграфного передатчика и телеграфного приемника. Во 2 й пол. 20 в. наиболее распространен стартстопный телеграфный аппарат … Большой Энциклопедический словарь - ТЕЛЕГРАФНЫЙ АППАРАТ, служит для передачи и (или) приема электрических телеграфных сигналов в процессе телеграфной связи. Обычно состоит из телеграфного передатчика и (или) телеграфного приемника. Наиболее распространен буквопечатающий телеграфный … Иллюстрированный энциклопедический словарь

    ТЕЛЕГРАФНЫЙ АППАРАТ - установка для передачи и приёма на расстоянии буквенно цифровой (кодированной) информации (телеграмм). Телеграфная связь (), в) реализуется чаще всего с помощью электрических сигналов, передаваемых по проводам с помощью телеграфного ключа, или… … Большая политехническая энциклопедия

    телеграфный аппарат - Устройство, в котором конструктивно объединены буквопечатающее устройство с клавиатурой, а также передатчик и приемник телеграфных сигналов. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией… … Справочник технического переводчика

    телеграфный аппарат - служит для передачи и (или) приёма электрических телеграфных сигналов в процессе телеграфной связи. Обычно состоит из конструктивно объединённых передатчика и приёмника телеграфных сигналов. Во второй половине XX в. наиболее распространён… … Энциклопедический словарь

    Телеграфный аппарат - 71. Телеграфный аппарат Telegraph apparatus Аппарат для передачи и (или) приема телеграфных сообщений

Первые телеграфные аппараты и станции на железнодорожном транспорте

(По материалам книги «История электрической связи железнодорожного транспорта», Н.М.Семенюта и И.А.Здоровцов, издательский дом Транспортная книга, 2008 г.)

В истории телеграфа в период с 1753-1839 гг. насчитывалось более 47 различных систем передачи. Большинство из них так и остались на бумаге, но были и такие, которые настойчиво пробивали себе дорогу к практическому применению… .

Основу первых телеграфов составляли приборы передачи и приема сообщений. В качестве передатчика, как правило, использовались манипуляторы, замыкающие и размыкающие электрические цепи. На первых телеграфах наибольшее применение получили специальные клавиатуры (телеграф Шиллинга, Якоби и др.), а затем простейшие телеграфные ключи (телеграф Морзе, Сименс и Гальске и др.)

Более сложными в электрических телеграфах обычно являлись приемные приборы, их устройство определялось принципом передачи сообщений. Так, в электролитическом телеграфе Земмеринга приемником был сосуд с водой (электролитом) и электродами. В первом электрическом телеграфе Шиллинга прием сообщения фиксировался по отклонению магнитной стрелки мультипликатора с диском и успокоителем колебаний. Во всех последующих телеграфах прием сообщений производился исключительно приборами, устройство которых основано на временном намагничивании мягкого железа (электромагнита). Такой прибор служил для приема телеграфных знаков, и его действие было основано на воздействии гальванического тока на мягкое железо.

Все основные узлы телеграфных аппаратов того далекого времени: двигатели, регуляторы, лентопротяжные механизмы были построены на элементах с использованием механических зависимостей и передач.

Пишущий аппарат Морзе. Самуэль Финли Морзе (1791-1872) - один из наиболее часто упоминаемых изобретателей телеграфного аппарата, названного его именем. На самом же деле он был только одним из изобретателей, и ему почти всю жизнь пришлось оспаривать свое изобретение. Такое положение возникло в связи с тем, что он неоднократно посещал Европу и был знаком со многими разработками других изобретателей того времени. Американцы все же создали Морзе неувядаемую славу изобретателя и еще при жизни. в 1871 г.. в Нью-Йорке в его присутствии ему был открыт памятник.

Памятник Самуэлю Финли Морзе


В результате многолетних экспериментов 4 сентября 1837 г. Морзе в Нью-Йорке при помощи своего аппарата и разработанной им условной азбуки впервые передал слова: «Удачный опыт над телеграфом сентябрь 4 1837».

В качестве передатчика электрических сигналов (станция А) в телеграфном аппарате Морзе применяется ключ (манипулятор) с линейной батареей. Приемником сигналов (станция Б) являлся электромагнит. При замыкании ключа на станции А ток по линии связи поступал в приемный электромагнит и возвращался обратно к батарее по земле. Якорь, вращающийся на оси, притягивался к сердечнику электромагнита. Одновременно с притяжением якоря вверх отходило его плечо с пишущим приспособлением - колесиком, смоченным черной краской. Колесико, будучи прижатым к движущейся бумажной ленте, оставляло на ней след в виде черты. При кратковременном нажатии ключа передатчика колесико делало короткую черту (точку), при продолжительном - длинную (тире). При нажатии ключа в различных комбинациях по продолжительности на ленте станции Б получались знаки - точки и тире в тех же комбинациях. В азбуке Морзе буквы алфавита, цифры и знаки препинания обозначались комбинациями, состоящими из токовых посылок различной продолжительности, которые и оставляли след в виде точек и тире на бумажной ленте приемника.

Принцип работы пишущего телеграфного аппарата Морзе


Данная схема аппарата, позволявшего телеграфировать только в одном направлении и получившая название симплекс , позволяла работать от станции А к станции Б с работоспособностью 500 слов в час. На практике также применялись схемы, дающие возможность поочередно телеграфировать сперва от станции А к станции Б, а затем наоборот - от Б к А (полудуплекс ) или одновременно телеграфировать в обоих направлениях (дуплекс ). При дуплексном телеграфировании пропускная способность возрастала примерно в два раза.

Основным преимуществом телеграфной связи на аппаратах Морзе была возможность получать контроль передачи собственного сообщения по телеграфной ленте, которая являлась документом по управлению движением поездов, а также возможность по гальваноскопу (миллиамперметру) контролировать состояние цепи связи, т. е. обрыв или короткое замыкание на линии. Таким образом было положено начало диагностики состояния цепей связи.

Телеграфный аппарат Морзе состоял из двух главных частей: электромагнита и часового механизма с системой колес, приводимых в движение гирей или пружиной. Часовой механизм бьл предназначен для продвижения телеграфной ленты.

Общий вид пишущего телеграфного аппарата Морзе (1844)

Причиной практической непригодности многих электромагнитных телеграфных аппаратов была сложность их устройства, громоздкость и низкая надежность. По этим показателям телеграфный аппарат Морзе значительно превзошел многие другие конструкции. Кроме того, аппарат позволял организовывать связь на далекие расстояния. Простота - замечательная особенность аппарата Морзе, которая обеспечила ему небывалый успех и долгие годы применения на железных дорогах во всех странах мира.

Буквопечатающий аппарат Юза. Буквопечатающий телеграфный аппарат профессора Д. Юза (1831-1900) впервые был установлен на магистрали Москва - С.-Петербург в 1865 г. Его особенностью являлась передача не точек и тире, например как в аппаратах Морзе, а передача букв, цифр и других знаков, что значительно сокращало время обработки принятых телеграфных сообщений.

Общий вид телеграфного аппарата Юза с гиревым приводом

Для передачи сообщений использовалась клавиатура, состоящая из 28 белых и черных клавишей. Аппарат имел гиревой привод с центробежным регулятором скорости продвижения телеграфной ленты. Прием посылок тока осуществлялся поляризованным электромагнитом реле. Вращающееся типовое колесо с выгравированными по окружности знаками (типами) алфавита, цифр и др., отпечатывало их на бумажной ленте.

Принцип работы буквопечатающего телеграфного аппарата Юза.

Принцип работы буквопечатающего аппарата Юза основывался на синхронном и синфазном вращении типовых колес передающего и приемного аппаратов. При нажатии, например, на клавишу К на передающем аппарате станции А, в линию через контакт клавиши поступает посылка тока. Когда типовое колесо приемного аппарата будет находиться над буквой К, сработает электромагнит М, и на телеграфной ленте отпечатает принятый знак.

Работоспособность аппарата Юза при 120 оборотах типового колеса в минуту составляла 10800 знаков в час. Дальность передачи находилась в пределах 600-800 км.

На железных дорогах телеграфный буквопечатающий синхронный аппарат не получил широкого применения, хотя и был предметом изучения в лаборатории телеграфа Петербургского института инженеров путей сообщения.

Быстродействующий аппарат Уитстона. Телеграфный аппарат Уитстона относился к быстродействующим аппаратам (2000 слов в час) и применялся для передачи на дальние расстояния (2000-9000 км) больших объемов корреспонденции между крупными железнодорожными подразделениями - управлениями железных дорог и др. Особенность этого аппарата состояла в том, что сообщение, подлежащее передаче, предварительно переносилось в азбуке Морзе на промасленную узкую телеграфную ленту, а затем с уже перфорированной ленты передавалось на другую станцию. На ленте точке азбуки Морзе соответствовали два круглых отверстия по перпендикуляру к средней линии отверстий, тире - два отверстия со сдвигом относительно друг друга. Средние круглые отверстия предназначались для протягивания ленты в трансмиттере (передающее устройство) посредством зубчатого колеса.

Аппарат Уитстона состоял из следующих приборов:

Перфоратора для предварительного набора на телеграфную ленту телеграмм, предназначенных для передачи;

Передатчика (или трансмиттера) для автоматической посылки сигналов с заранее заготовленной перфорированной ленты;

Приемника или ресивера для записи на ленте принятых сигналов в азбуке Морзе;

Телеграфного ключа для ручной передачи знаков сообщений

Перфоратор Уитсона для узкой бумажной телеграфной ленты

Клавиатура перфоратора имела три клавиши для пробивки отверстий в соответствии с азбукой Морзе Для пробивки круглых отверстий в телеграфной ленте требовалась определенная сила и производилась она специальными массивными «колотушками» при ударе по соответствующим кнопкам перфоратора. Заготовку перфорированной телеграфной ленты можно было производить заранее на нескольких перфораторах.

После подготовки перфорированная телеграфная лента вставлялась в телеграфный аппарат и с большой скоростью пропускалась через трансмиттер, который автоматически посылал в линию при передаче точки ток положительный полярности и тотчас же отрицательной для разряда линии, а при передачи тире - положительный и немного позже отрицательный ток Такой способ позволял значительно повысить скорость передачи посылок тока. Протягивание телеграфной ленты в передатчике и приемнике производились с помощью гирь или часовых механизмов с пружинами.

Быстродействующий аппарат Сименса В истории связи известно несколько вариантов пишущих телеграфных аппаратов Сименса и Гальскс, которые «отличались особенной прочностью и отчетливостью действия» . Их основное отличие от аппаратов Морзе заключалось в более сложном устройстве электромагнита.

Телеграфный аппарат Сименса: а) передатчик с перфоратором; б) приемник


На железных дорогах в основном применялись аппараты Сименса, обладавшие весьма большим быстродействием (5000 слов в час), для телеграфного обмена министерства с крупными железнодорожными узлами. В аппаратах Сименса, как и в аппаратах Уитстона, сообщения предварительно набирали на клавиатурном перфораторе, подобном перфоратору телеграфного аппарата Уитстона. Для передачи букв и цифр в передатчике использовались комбинации из пяти посылок тока положительных и отрицательных полярностей. На ленте для каждой буквы пробивались пять отверстий в различных комбинациях. Принятое ресивером (приемником) сообщение записывалось на бумажную ленту аппарата (ондулятора) зигзагообразными линиями в соответствии с кодом Морзе.

Многократный аппарат Бодо Бодо Жан (1845-1903) - французский изобретатель, создавший практически пригодную систему многократного последовательного телеграфирования, которая многие годы применялась на железных дорогах.

Жан Бодо

Идея многократного телеграфирования заключалась в использовании промежутков времени между передачей знаков от одного аппарата другим аппаратам, т. е. в использовании одной линии связи для нескольких телеграфных передач, какие попадают в предназначенные для них приемные аппараты другой станции. Аппарат Бодо получил мировое распространение.

Аппарат Бодо состоял из трех основных частей: контактного распределителя; клавиатуры; печатающего устройства. В аппаратах Бодо каждый знак передавался пятью посылками токов положительной и отрицательной полярностью в различных комбинациях. Для посылки пяти сигналов предназначалась клавиатура или манипулятор, имевшая пять клавишей: три - для правой руки и две - для левой

Клавиатура телефонного аппарата Бодо

Основным элементом печатающего устройства было типовое колесо с прижатым к нему красящим колесом. Печатание буквы (цифры) на телеграфной ленте осуществлялось при прижатии телеграфной ленты к типовому колесу.

Приемник и печатающее устройство телеграфного аппарата Бодо

Аппараты Бодо были 2-, 4-, 6-, и 8-кратные, имевшие соответствующее число (крата) комплектов для приема; на железных дорогах применялись в основном 2- и 4-кратные аппараты. Работоспособность 2-кратных аппаратов составляла 2700, 4-кратных - 5400 слов в час. Оборудование наиболее распространенного 4-кратного аппарата Бодо размещалось на пяти столах, на которых были установлены распределитель, четыре комплекта (крата), состоящих из приемника и клавиатуры.

Общий вид быстродействующего четырехкратного телеграфного аппарата Бодо

Впервые система Бодо была введена в эксплуатацию в 1877 г. на линии Париж -Бордо, а затем в других странах, в том числе в 1906 г. в России, где он до 1950 г. был основным видом телеграфных аппаратов. Телеграфные аппараты Бодо обеспечивали устойчивую работу на линиях 700-1000 км и на железнодорожном транспорте применялись для связи МПС с управлениями дорог и последних с крупными железнодорожными узлами.

Устройство телеграфных станций Самыми простыми телеграфными станциями в начале их развития были станции, в которых телеграфные линии оканчивались включенными в них телеграфными аппаратами. Такие оконечные станции устраивались относительно редко. Большее распространение получили промежуточные телеграфные станции, позволяющие производить коммутацию линий связи и аппаратов. Слово «коммутация» происходит от латинского commutatus - изменение. Процессы коммутации в электрической связи реализуются в специальном устройстве - коммутаторе, в котором производятся переключения линий связи и изменения направлений передачи телеграфных депеш. На промежуточных телеграфных станциях для ручной коммутации вначале использовались простейший круглый, а затем квадратный коммутаторы с тремя отверстиями. Коммутаторы состояли из трех медных пластинок, прикрепленных к деревянной доске так, чтобы они не прикасались друг к другу; но их можно соединить вместе, вставляя медную втулку (штепсель) и производить подключение. одного линейного провода на промежуточных станциях к двум аппаратам.

С увеличением числа линейных проводов и телеграфных аппаратов начали использовать более сложные коммутаторы, («швейцарские»), которые состояли из нескольких взаимно перпендикулярных медных пластин с круглыми отверстиями. Для соединения горизонтальной и вертикальной полос и линейного провода с необходимым телеграфным аппаратом (1, 2, 3) в отверстие вставлялась медная втулка. Число пластинок в каждом ряду зависело от числа проводов, сходящихся на станции, для которой был предназначен коммутатор.

Швейцарский телеграфный коммутатор

Принцип работы такого коммутатора широко применялся и в автоматических системах коммутации. В последующие годы возможности подобных коммутаторов были расширены, с их помощью стало возможным коммутировать не только телеграфные аппараты и линейные провода, но и батареи питания, т. е. они стали универсальными и получили название линейно-батарейных коммутаторов. Из них наибольшее распространение получил более совершенный швейцарский коммутатор координатного типа, который состоял из поперечных и продольных латунных пластин (ламелей), расположенных под прямым углом. В местах пересечения пластин они имели цилиндрические отверстия для вставки медного штепселя. Если в отверстия вставить штепсель, то верхняя пластина электрически соединяется с нижней пластиной и происходит коммутация цепей. Емкость таких коммутаторов была небольшой (10-12 линий), поэтому в дальнейшем они были заменены на отечественные линейно-батарейные коммутаторы (ЛБК) емкостью 60-100 линий.

Широко используемая в практике промежуточной телеграфной станции - трансляция (от лат. translation - передача). С внедрением телеграфной связи одной из основных проблем стало увеличение расстояния непосредственной телеграфной передачи, т. е. прямой связи двух оконечных аппаратов. Общий вид телеграфной трансляции БСТО (Большого Северного Телеграфного общества), широко используемой на железных дорогах России:

Общий вид простой телеграфной трансляции типа БСТО

Пределом непосредственной передачи телеграфных аппаратов того времени было около 300 верст. Следовательно, для передачи депеш на большие расстояния, необходимо было передать ее сначала на промежуточную станцию, расположенную на расстоянии не более 300 верст, там принять ее, написать и с помощью другого аппарата передать вновь на 300 верст и т. д. На такую ручную передачу депеш затрачивалось много времени. Основными элементами трансляции являлись поляризованные телеграфные реле Присса. Применение телеграфных трансляций позволило значительно увеличить расстояния при прямой передаче депеш.

Процесс становления и развития в Российском государстве промышленности по передаче сообщений с использованием электрических сигналов неразрывно связан с началом строительства железных дорог. Исторически эпоху становления и развития электросвязи на российских железных дорогах условно можно разделить на три этапа. Первый этап охватывает период с 1843 г. по 1958 г. (115 лет) и характеризуется применением аналоговых сетей воздушных линий связи (ВЛС) различных конструкций. Второй этап определяется периодом с 1959 г. по 1994 г. (35 лет) и связан с заменой ВЛС на симметричные кабельные линии связи (КЛС) с медными жилами, уплотняемые аналоговыми системами передачи с частотным разделением каналов (АСП с ЧРК) типа К-24, К60 и др. Третий этап охватывает период с 1995 г. по настоящее время и связан с полной заменой аналоговых систем и сетей связи на цифровые с использованием волоконно-оптического кабеля, радиорелейных и спутниковых линий, оборудованных цифровыми системами передачи с временным разделением каналов (ЦСП и ВРК)

Свой сложный эволюционный путь техника передачи сообщений начала с примитивной телеграфной связи (1843 г.) Перед началом проектирования и строительства С.-Петербурго-Московской железной дороги был рассмотрен зарубежный опыт, изучение которого было поручено Департаменту железных дорог. Все работы по сооружению С.-Петербурго-Московской железной дороги возглавил Главноуправляющий путями сообщений и публичными зданиями генерал Петр Андреевич Клейнмихель.

П.А. Клейнмихель (1793-1869)

Особо обращалось внимание на «принятые и употребляемые системы и способы для сигналов, подаваемых с дороги и с вагонов в разных случаях при движении по железной дороге». На Фрейбургской железной дороге действовал Зеркальный телеграф, изобретенный Трентлером. Представитель департамента докладывал Клейнмихелю, что «зеркальный телеграф имел большую сложность как самих сигналов, так и способа их обслуживания. ..таких телеграфов потребно на всякую милю не менее 10..». Таким образом для С.-Петербурго-Московской железной дороги потребовалось бы не менее 900 штук таких телеграфов. Французским инженером Гереном был разработан Акустический телеграф. Его основу составлял телефон-прибор, служащий для сжатия воздуха, который употреблялся для передачи приказаний и сигналов от одной станции до другой через путевую стражу. Звуки телефона издавались на пистонном рожке и были слышны на 8 и более верст. Аппарат позволял передавать до 10 различных сигналов, вполне отличимых друг от друга. Сигналисты, обслуживающие его должны были обладать музыкальным слухом.

Передатчик акустического телеграфа (1843 г.)

Техническая комиссия отнеслась холодно к телефону Герена. Однако отношение Клейнмихеля было теплым, и он доложил об аппарате царю Николаю I.

Также была рассмотрена Колокольная сигнализация Бейля . Колокола приводились в действие проволокой, проведенной у подошвы рельса (начало механической централизации!). Летом действие было хорошее, но зимой проволока примерзала к земле. Сигнальные трубы. Этот вид сигнализации применялся для передачи голосовых сообщений при переговорах. На Мюнхен-Аугсбургской ж.д. при безветрии сигнал был слышен на расстоянии 1000-1200 м. Но, как и во всех видах сигнализации и связи, безопасность (сохранность труб) зависела от бдительности стражи.

В 1850 г . перед самым началом составления проекта электромагнитного телеграфа вдоль С.-Петербурго-Московской железной дороги поступило донесение об Электрохимическом телеграфе американского изобретателя Бена. В донесении отмечалось, что «..Буквы в телеграфе Бена, как и в телеграфе Морзе, передаются знаками, состоящими из черточек и точек, различным образом соединенных. В телеграфах Морзе эти знаки отмечаются на бумаге стальною иглою и потому бывают не довольно явственны; в телеграфе же г.Бена они обозначаются на бумаге синим цветом весьма отчетливо.»

Электрохимический телеграфный аппарат Бена (1835)

В целом аппарат Бена членам Комитета понравился, но был отмечен недостаток: на образование прорезей в бумаге для передачи депеши требовалось довольно много времени. Предлагалось приобрести электрохимический телеграф в одном полном экземпляре для сравнения его с другими испытываемыми телеграфами. С этим предложением согласился Клейнмихель и Министерство финансов приобрело один телеграфный аппарат Бена за 2300 руб. В последствии Клейнмихель отказался от его применения и Комитет вынес заключение, что он не подходит под систему российского телеграфа, но может быть полезен для науки и помещен в музей Института корпуса путей сообщения, что и было сделано в 1851 г. Принцип электрохимической обработки принятых телеграмм впоследствии широко использовался в фототелеграфных аппаратах, т.е. для науки принципы аппараты Бена, несомненно, были полезны.

В мае 1845 г. представитель департамента сообщил Клейнмехелю об Электрическом телеграфе , который применялся в Германии, и его устройство было поручено знаменитому Мюнхенскому физику Сейнгейму. В другом сообщении в августе 1844 г. говорилось об англичанине Г.Фердели, который «..весьма много занимается придумыванием сигналировки посредством электричества…и изготовил весьма удовлетворительный электромагнитный печатающий телеграф. Не подлежит сомнению, что эта телеграфическая система совершеннее всех до сих пор по сему предмету известных систем; большемерное же ее применение понизилось в половину цены, вследствие вновь придуманного способа, по коему ведущие проволоки проводятся, не так, как до селе под землею в каучуковых челах и в чугунных трубах с гарцевою смазкою, но по воздуху – на высоких подпорах, при чем все точки прикосновения уединяются стеклянными или полированными глиняными изделиями. Г Фердели уверял меня, что его телеграф мог бы легко устроить в С.-Петербурге академик Б. Якоби.»

Академик Борис Семенович Якоби

Из всех исследований применения телеграфа за рубежом представители Российской империи пришли к выводу, что «компания Царскосельской железной дороги, например, для собственной пользы, могла бы устроить электромагнитную линию между С.-Петербургом и Царским Селом».

Первая телеграфная магистраль России.

Движение по С.-Петербурго-Московской железной дороге открывалось отдельными участками в разное время, начиная с мая 1847 г. К открытию движения на С.-Петербурго-Московской железной дороге было издано «Положение о составе Управления С-Петербурго-Московской железной дороги», согласно которому Управление дороги имело четыре состава (по современной терминологии - «службы»): дорожный, станционный, подвижной, телеграфический. При этом «Состав телеграфический» с момента организации Управления дороги был самостоятельной службой, и в него входило два Управления телеграфа, которые располагались в обеих столицах (С.-Петербурге и Москве). Штат этих управлений состоял из двух дежурных офицеров, двух писарей и двоих курьеров. На остальных станциях располагались «телеграфические отделения» (от 1-го до 35-го) во главе с унтер-офицером и все нижние чины составляли «телеграфическую роту».

Аппараты Морзе располагались на столичных станциях, на остальных - аппараты Сименса. С учетом телеграфной связи с Зимним дворцом на столичных станциях было три аппарата Морзе, к которым были назначены по 4 старших «сигналиста». Аппаратов Сименса было установлено 76, к каждому из них были назначены по 1 старшему и 2 младших «сигналиста». При каждом «телеграфическом отделении» состоял также один «кантонист», которого подготавливали в сигналисты. Аппараты Морзе столичных станций, как и аппараты Сименса, расположенные на всех станциях первого класса, были соединены «толстым» проводником. Станции второго, третьего и четвертого классов соединялись «тонкими телеграфическими проводами». Обратим внимание, что уже на первой железнодорожной магистрали С.-Петербург - Москва станции были поделены на классы. Для работы аппаратов предусматривалось по две батареи питания: «одна для действия, а другая для смены на следующий день» . На российских телеграфах вначале (до 1865 г.) для батарей использовались элементы Даниэля, а затем их заменили элементами Мейдингера.

Первоначально линия была построена с использованием подземных проводников, которые действовали два года и были заменены воздушными. Аппараты Сименса также с 1 852 г. начали постепенно заменяться аппаратами Морзе. Замена была связана с тем, что аппараты Сименса обеспечивали скорость передачи не более 25 слов в час и требовали 100 и более элементов питания, контроль депеш был затруднителен, так как при приеме по диску с буквами их приходилось диктовать, и это было главной причиной замедления приема депеш. Аппарат Морзе обеспечивал скорость передачи в 100 раз больше, и принятая депеша оставалась на телеграфной ленте. Аппараты еще около 100 лет использовались на железнодорожном транспорте. В России все телеграфы того времени находились в ведении Главного управления путей сообщения, они передавали телеграммы, связанные с работой, как железнодорожного транспорта, так и частных лиц. В общем пользовании железнодорожный телеграф находился до 1864 г, когда телеграф был передан почтовому ведомству. Отсюда возникла «кабала» почтового ведомства над железнодорожными телеграфами, бороться с которой пришлось до организации телеграфной связи общего пользования.

Начало строительства . Академику Якоби было поручено составление проекта телеграфа между С.-Петербургом и Москвой по образцу устроенного им в 1843 г. электрического телеграфного сообщения между зданиями Главного управления путей сообщения в С.-Петербурге и дворцом Царского Села, а также между Зимним Дворцом в С.-Петербурге и кабинетом Главноуправляющего путей сообщения. В качестве «совещательного инженера» из Америки был приглашен один из известных специалистов железнодорожного дела инженер-майор Уистлер. В его задачи входили также вопросы по организации на железной дороге сигнализации.

Высочайшим повелением в 1845 г. было «признано нужным сделать опытное электромагнитное сообщение от Знаменского моста, по направлению железной дороги, на протяжении одной версты, в 1846 году - опытную линию от С.-Петербурга до Александровского завода, производящего мастику (изолирующую массу). Выполнение обеих линий также было поручено академику коллежскому советнику Якоби».

Перед Якоби встала крайне трудная проблема, требующая решения ряда сложных задач: усовершенствовать свой телеграфный аппарат; улучшить производство подземных проводов, изолированных и уложенных в стеклянные трубочки с резиновыми соединениями; создать изолирующую массу для стыков трубочек; разработать необходимые измерительные приборы и др. Строительство начали с подземной прокладки металлических проводников в берме полотна железной дороги. Предложение Якоби использовать воздушные провода, широко применяемые уже за границей, не нашло поддержки. Более того, Главное управление путей сообщения настояло на «более верном средстве» и остановилось на подземной проводке. Якоби все же предпринимал усилия для выполнения порученного ему дела. Для лучшей изоляции 600-верстной линии применил два медных провода, уложенных в деревянные желоба и залитые асфальтом. Открытие гуттаперчи дало возможность использовать и ее в качестве изолирующего вещества. Однако кустарный способ «изолировки» не дал удовлетворительных результатов. В конечном итоге неудачи разочаровали Якоби, и в 1848 г. он попросил освободить его от работ по устройству телеграфа. В дальнейшем развитие телеграфа в России было тесно связано с именами Карла Карловича Людерса (Лидере) и Вернера фон-Сименса, приехавших в Россию из Пруссии для «приложения» своего изобретения - телеграфного аппарата.

В 1850 гг. Людерсом было сделано предложение о распределении «телеграфических станций» на линии С.-Петербург - Москва.

Карл Карлович Людерс

В нем были намечены основы устройства, эксплуатации и обслуживания телеграфа на первой скоростной железнодорожной магистрали в России С. -Петербург – Москва: «…оказывается необходимым устроить столько же телеграфических станций, сколько является таковых на железной дороге, а именно 33. Для каждой из них кроме оконечных в С.-Петербурге и Москве, потребно по два аппарата, полагая при одном аппарате 3 сигналиста, что составляет по 8-ми часов дежурств в сутки на каждого, потребуется для полного телеграфического действия 192 сигналиста…. Телеграфические аппараты должны быть помещены на самих станциях, ибо без этого невозможно было бы останавливающимся только на несколько минут поездам сообщать полученные депеши и принимать таковые же от них. Для установки аппаратов на станциях I и II классов может быть занята одна из комнат, находящихся возле кассы, которая входит в состав квартиры кассира. На станциях III класса аппараты могут быть помещены в одной из пристроек водогрейной, которая не имеет определенного назначения; в другой же пристройке помещаться будет тендер запасного локомотива. Наконец, в станциях IV класса аппараты могут быть помещены в пассажирских домах, где такие есть, а где их нет, самый аппарат может быть помещен в нижнем отделении водогрейного дома, под топками, как теперь сделано в Колпине. Для помещения телеграфической команды и для сохранения и заряжения гальванических батарей не имеется места на самих станциях, но как при них должны быть устроены еще особые дома и службы, то при составлении проектов на эти постройки следует иметь в виду помещения для прислуги, при телеграфе потребной».

Дворцовая телеграфная станция в Петергофе.

Телеграф – набор методов, позволяющих передать текстовые символы, письменность, сообщения на дальние дистанции. Предполагается знание обеими сторонами регламента обмена информацией, определённых правил расшифровки. Например, железнодорожник понимает сигналы семафора, водители – светофора. Сие простейшие примеры принципа действия телеграфа. Исторически люди применяли дым, маяки, отражённый зеркалом свет.

Термин

Слова введены французским изобретателем семафора, Клодом Шаппом (семафор, телеграф). Ныне термин привычно обозначает электрическую разновидность устройств. Беспроводная телеграфия подразумевает модуляцию несущей, противопоставляясь используемой ранее Герцом технике наблюдения искрового промежутка. Противореча Шаппу, Морзе указывал уместность применения термина, обозначая системы передающие/записывающие послания. Дым тогда следует считать семафором.

Переданное послание стали называть телеграммой. Отдельной строкой стоит Телекс, дошедший сетью.

История

Согласно терминологии Морзе, телеграф изобрёл Павел Шиллинг. Ранние модели посылали сигналы точка-тире, символы печатной машинки.

Оптический телеграф

Первый оптический телеграф построил Роберт Хук (1684 год) для Королевского общества Великобритании. Эксперименты продолжил сэр Ричард Лоуэлл Еджворт (1767 год). Семафорная сеть Шаппа 1793 года проработала полвека. Немало популярности изобретения поспособствовала Французская революция, требуя сократить время передачи правительственных донесений. 2 марта 1791 года, в 11 утра, отправлено первое сообщение, преодолевшее 16 км: «Продолжив, скоро будешь овеян славой».

Незамысловатая конструкция содержала наблюдательный телескоп, пару черно-белых панелей. Оператор, листая книгу кодов, выписывал буквы. Год спустя Клоду поручили проложить линию Париж-Лиль длиной 230 км. Задумка призвана упростить управление австрийской войной. В 1794 году линия принесла весть: капитулировал Конде-сюр-л`Эско. Затрачен 1 час времени.

Пруссы потрясены возможностями новой системы, построив собственные линии (1830-е годы). Работоспособность телеграфа задавалась погодными условиями, временем суток. Скорость доставки составила два-три слова ежеминутно. Последний береговой вариант похоронен Швецией (1880). Франция продолжала использование изобретения, доверив семафор морякам, желающим передать весточку берегу. Несомненны достоинства методики:

  1. Отсутствие затрат энергии, включая солнечную. Система успешно противостоит облачной погоде.
  2. Скорость даст 100% очков форы гонцам (пловцам).

Электрический телеграф

Первую идею утилизации полезных свойств электричества обнародовал журнал Скотс мэгэзин (1753 год). Энтузиасты предложили выделить каждой букве алфавита индивидуальный провод (тогда использовали шёлковые нити). Источником электричества выступил статический генератор. Ранние приёмные устройства использовали явление взаимодействия зарядов. Затея, лишённая перспектив, осталась собирать пыль архива.

Джордж-Луи ле Саг построил (1774) двадцать лет спустя согласно заметке первую электростатическую модель. 26 проводов позволяли читать буквы людям, занявшим соседние помещения.

Новый толчок развитию направления дало изобретение Вольтой электролитических источников тока. Немецкий учёный Томас фон Зёммеринг (1809) усовершенствовал конструкцию математика Франциско Сальва Кампилло. Обе вмещали 35 параллельных проводов, продолжая идею, описанную выше. Новинка шутя покрывала дистанцию пару-тройку километров.

Приёмная сторона, снабжённая электролитическими колбами, наблюдала пузырьки водорода. Номер реторты соответствовал букве, цифре. Визуальное наблюдение помогало несущему наряд оператору зафиксировать переданное пузырьками сообщение. Битрейт оставлял желать лучшего.

Годную модель построил английский изобретатель Франсис Роналдс (1816). Фамильное поместье (Хаммерсмит Молл) украсила канава протяжённостью 175 ярдов. Отрезок длиной 8 миль снаружи шёл воздушным путём. Представленное адмиралтейству изобретение оценили, как «полностью бесполезное». Письменная работа Роналдса Описание телеграфа и некоторых других электрических аппаратов считается безусловно первым манускриптом, касающимся темы. Попутно Франсис рассмотрел ретардацию сигналов, спровоцированную неизвестной тогда науке индукцией.

Питер наносит ответный удар

Русский дипломат Павел Шиллинг продемонстрировал (1832) дистанционную передачу сообщений меж соседними помещениями. Примечательным моментом стало использование шифрования символов: попытка уменьшить количество соединительных проводов. Роль приёмников сыграли 6 мультипликаторов, соединительных линий стало 8:

  1. Сигнальная.
  2. Возвратная.
  3. 6 информационных.

Постепенно изобретатель догадался буквенный код заменить цифровым. Новая редакция прибора содержала 2 медных жилы. Британское правительство (1836) пыталось выкупить патент. Изобретатель отвергает зарубежное предложение, принимая условия Николая I. Длина очередной воздвигнутой линии составила 5 километров, соединив здание адмиралтейства, царский дворец Петергофа, морскую базу Кронштадт для служебной переписки. Проект окончился смертью изобретателя.

Интересно! Ранее (1821) Аднрэ-Мари Ампер высказывал идею реализации телеграфа посредством поворотных рамок, управляющих гальванометром Швейггера. По словам учёного, он экспериментально проверял собственные идеи. Питер Барлоу (1824) повторил шаги, проделанные Ампером, сочтя достигнутую максимальную дистанцию 200 метров неперспективной.

Карл Фридрих Гаусс и Вильгельм Вебер создали (1833, Гёттинген) первый электромагнитный телеграф, объединивший обсерваторию и Институт физики, разделённые пространством протяжённостью 1 км. Шиллинг применял поворотные рамки, наподобие конструкции Швейггера. Немецкие учёные задействовали настоящее электромагнитное реле, образованное катушкой проволоки. Элементами кода стали положительное, отрицательное направления течения тока. Постепенно передачу информации стали кодировать импульсами, повысив скорость. Спонсированные Александром фон Гумбольдтом учёные продолжили работу, первая рабочая модель обустроена Карлом Августом Штайнелем (Мюнхен – 1835-1836 г.г., затем – первая немецкая железная дорога).

Коммерческий успех

Американцы вели разработки параллельно. Некоторые упрекают Дэвида Альтера в плагиате. Доктор ответил репортёру: «Затрудняюсь заметить связь меж изобретением Морзе и телеграфной связью Элдертона. Профессор также вероятно ничего не слышал про местные средства передачи сообщений».

Самюэль Морзе запатентовал (1837) пишущий электрический телеграф. Помощник инженера, Альфред Вэйл разработал регистратор: стилус, управляемый магнитом. Совместно искатели сгенерировали новый код. 11 января 1838 года Морзе выслал сообщение, преодолевшее 3 км провода.

Это интересно! Интернет полон заблуждений, будто первой пташкой стала библейская фраза WHAT HATH GOD WROUGHT? Указанное послание датируется 1844 годом. Тогда длина телеграфной сети составила 44 км.

Май 1837 года подарил планете первый платный сервис отправки сообщений. Вильям Фотергиль Кук и Чарльз Витстон запатентовали шестипроводной игольчатый телеграф. Система могла включать произвольное количество заострённых стальных стержней. Изобретатели рекомендовали использовать 5 штук. Четырёхигольная модель соединила два района Лондона. 25 июля 1837 года прошла успешная демонстрация. Гаусс пробивался спонсированными деньгами – Кук и Витстон заработали, продав запатентованные модели.

Заложенный подземный кабель вскорости приказал долго жить: пробой изоляции. Изделие заменили единственной жилой, лишённой покрытия. Прибор модернизировали. После сокращения осталось 2 иглы, длина кода возросла. Следующая инсталляция (Слау, 1843 год) содержала двухпроводной кабель, обходясь единственным острием. Первый коммерческий успех привлёк внимание энтузиастов, обеспечив отрасль стабильным приростом инноваций.

Азбука Морзе

CША новый код завоёвывал 20 лет, 24 октября 1861 года прикончив Пони Экспресс путём сквозного пересечения континента линией. Вскорости каждый почтовый офис обзавёлся экземпляром новой системы оказания услуг. Коммерсанты видели широкий круг задач:

  1. Повысить скорость передачи.
  2. Снизить стоимость.
  3. Уменьшить объем ручного труда.

Уволить телеграфисток помог метод АВС Витстона (1840). Изобретатель расположил буквы вокруг циферблата часов. Приёмная игла выбирала нужную. Клиенту-получателю оставалось записать результат. Скорость достигла лимита 15 слов/мин.

Новые свершения

Александр Бейн запатентовал (Эдинбург, 1846) химический телеграф. Ток двигал стальной стилус по бумаге, пропитанной смесью нитрата аммония и ферроцианида калия. Полученные голубые маркеры повторяли переданный код Морзе. Максимальная скорость составила 1000 слов/мин. Послание расшифровывал оператор. Новинке пришёл конец: разъярённая группа Морзе отсудила патент.

Параллельно Роял Эрл Хаус разработал печатную систему, содержащую клавиатуру. Приёмная сторона автоматически формировала бумажное сообщение. Заявленная скорость составила 2600 слов/час. Существовала паровая версия 1852 года.

Идею подхватил Дэвид Эдвард Хагис. Клавиатура, содержащая 26 символов, завоевала всеобщее признание. Техника отличалась завидной аккуратностью. Следующая новинка заставила подождать, выявив всеобщее удовлетворение существующим положением дел. Эмиль Бодо (1874) внедрил собственную кодировку. Символ передавался положением пяти переключателей. Скорость составила 30 слов/мин.

Окончательно автоматизировал процесс Чарльз Витстон, изобретя перфоленту. Устройство, бесхитростно названное Стик Панч, напоминало печатную машинку. Оператор садился, набивал послание, вправлял ленту, передавал приёмной стороне. Скорость достигла уровня 70 слов/мин.

Принтеры-телексы

Печатные устройства запоздали. Первой удачной версией считают изобретение Фредерика Крида (1924). Инженер выпустил ряд инновационных механизмов, включая перфоратор ленты. Движителем выступил сжатый воздух. Автоматизированная система кропала 200 слов ежеминутно, составив конкуренцию химической модели XIX века. Работник компании Крида, Дональд Мюррей, модифицировал код Бодо, взяв соответствующий патент. Вскорости модель P3 (1927) завоевала почтовые отделения. Система заинтересовала издание Дэйли Мэйл, вышел адаптированный вариант перфоратора.

Усовершенствованные системы компании Телетайп захватили аэропорты, разнося служебные сообщения, прогнозы погоды. К 1938 году сеть охватила США полностью, исключая штаты Мэн, Южная Дакота, Нью-Хэмпшир. Крид оккупировал Британию, Сименс – Германию. Адресат выбирался согласно стандартному телефонному номеру (импульсный набор). Новый класс устройств назвали телексами.

Посредством мультиплексирования одна линия вмещала максимум 25 машин. Телекс стал надёжным средством дальней связи.

Атлантический кабель

Идея соединить материки родилась параллельно изобретениям Генри, Витстона. Родоначальником считают Морзе (1840). Учёные искали подходящий изолятор, способный защитить медную жилу. Шотландский хирург Вильям Монтгомери предложил (1842) гуттаперчу – липучий сок малазийского растения. Фарадей и Витстон немедля подтвердили изоляционные качества материала. Было решено выполнить прокладку линии Дувр-Кале. Тестирование (1849) прошло успешно на базе реки Рейн.

Первые шаги: зарождение идеи

Джон Ваткинс Бретт получил одобрение Луи-Филиппа проложить линию, объединяющую Англию и Францию. Работы окончились к 1850 году. Трассу довели до Ирландии. Параллельно епископ Джон Маллок, глава Романской католический церкви Ньюфаундленда провел линию лесом, снабдив епархию связью. Следующий проект последователей Христа пересек залив святого Лаврентия. Потуги священника вдохновили Фредерика Ньютона Гисборна. Изобретатель получил (1851) гранд легитимной власти острова, сформировав компанию, высказал идею Цирусу Весту Филду. Так родилась идея покорения Атлантики.

Выработка методики укладки

В 40-е годы XIX века отдельные энтузиасты лелеяли надежду соединить берега Америки, Европы медной жилой. Среди прочего, Эдвард Торнтон, Алонцо Джэкман. Цирус взял консультацию у Морзе. Затем заинтересовал лейтенанта Мэттью Мори, сведущего в океанографии. После Филд оповестил компании Ньюфаундленда, США, Великобритании, предложив организовать океанический телеграф.

Следующий проект (1854) преследовал смелую мысль – покорить Атлантику. Затейники быстро осознали нехватку финансирования. Потребовалось организовать общество, собирающее средства. Первым шагом стала попытка (1855) покорить залив святого Лаврентия. Барк исправно клал кабель, помешал шторм: пришлось срочно резать, спасая жизни людей. Следующим летом пароход успешно завершил задуманное. Филд, назначив главным инженером Чарльза Тильстона Брайта, решился.

Трансатлантическая компания

6 ноября 1856 года предприниматели создали Атлантическую телеграфную компанию (Лондон), занимавшуюся конструированием подводной магистрали, призванной приблизить столь дальние берега США хотя бы с точки зрения скорости передачи новостей. Попытка 1858 года увенчалась успехом. Линию сломали лица, передававшие сообщения.

Километр кабеля, образованного семью медными жилами, весил 26 кг. Покрытый тремя слоями гуттаперчи – почти втрое тяжелее. Изолятор извне защищал конопляный чулок (пенька), броней послужила тесная спираль 18 витых стальных жил. Итоговый вес составил 550 кг/км. Производством занялись две мануфактуры:

  1. Гласс, Эллиот и Ко (Гринвич).
  2. Р.С. Ньювал и Ко (Биркенхэд).

Позже вскрылось: отдельные секции намотаны в противоположных направлениях. Указанное отступление от технологии намеренно преувеличивалось перед общественностью после поломки кабеля, вызванной превышением допустимого электрического напряжения. Правительство Англии выделило 1400 фунтов стерлингов, предоставив корабль. Следующий (после первой неудачи) сбор средств длился 8 лет. 28 июля 1866 года сервис заработал. Общая хронология:


Это интересно! Электрическое разрушение первого удачно проложенного кабеля произвёл Вилдман Вайтхаус. Учёный муж попробовал значительно поднять напряжение, полагая повысить скорость. Публике объявили: виноваты производитель, склады, третьи лица.

Личное мнение перевесило интеллект

Потуги инженеров привлекли внимание учёных, возжелавших исследовать проблемы передачи сигнала вдоль длинных линий. Проще говоря, мужей науки попросту заставили дать ответ. Проблема усугублялась разногласиями 2 главных инженеров, разделённых океаном, на предмет того, как должен работать кабель:

  1. Лорд Кельвин, ухвативший западный конец, считал недопустимым повышать напряжение. Вместо этого предлагалась импульсная передача с детектированием по переднему фронту вытекающего тока. Дифференциальный гальванометр-регистратор Кельвин изобрёл ранее.
  2. Занимавший восточный конец Вайтхаус имел медицинское образование. Знания электричества оставляли желать лучшего. Медик, буквально истолковав закон Ома, внимая совету Кельвина, решил повысить напряжение. Подручные быстро достали индукционную катушку, обеспечивающую разницу потенциалов несколько тысяч вольт. Изоляция морской нити терпела пытку несколько дней, затем система окончательно доломалась. Негативная реакция общественности заморозила дальнейшие работы на 7 лет.

Great Eastern

Проект 1865 года осуществляло судно Great Eastern. Три танка вместили 4300 км кабеля, палубу оборудовали специальной оснасткой. Утром 15 июля 1865 года корабль покинул бухту острова Валентиа. 31 числа пройдено 1968 км, моряки потеряли конец… Пароход затрубил к Англии, Филд организовал новое предприятие – Англо-Американскую телеграфную компанию. Собрав деньги, Великий Восток отчалил 13 июля 1866 года. Презрев капризы погоды, 27 числа команда успешно достигла противоположного берега. Следующим утром (9:00) английское сообщение цитировали передовицы Таймс.

 

 

Это интересно: