→ Разработка информационной системы учета строительно монтажных работ. Курсовая работа: Разработка информационной системы учета работы строительного предприятия. С чего начинать внедрение информационной системы

Разработка информационной системы учета строительно монтажных работ. Курсовая работа: Разработка информационной системы учета работы строительного предприятия. С чего начинать внедрение информационной системы

ü

ü Информационный обмен в строительстве.

ü Средства автоматизации информационных процессов.

ü Понятие системы, управления, многоуровневый характер информационного обмена.

Под системой понимают любой объект, который одновременно рассматривается и как единое целое, и как объединенная в интересах достижения поставленных целей совокупность разнородных элементов. Системы значительно отличаются между собой как по составу, так и по главным целям. Добавление к понятию "система" слова "информационная" отражает цель ее создания и функционирования.

Термин информационнаясистема (ИС) используется как в широком, так и в узком смысле.

В широком смысле информационная система есть совокупность технического, программного и организационного обеспечения, а также персонала, предназначенная для того, чтобы своевременно обеспечивать надлежащих людей надлежащей информацией.

Также в достаточно широкомсмыслетрактует понятие информационной системы Федеральный закон РФ от 27 июля 2006 года № 149-ФЗ «Об информации, информационных технологиях и о защите информации»: «информационная система - совокупность содержащейся в базах данных информации и обеспечивающих её обработку информационных технологий и технических средств».

Одно из наиболее широких определений ИС дал М. Р. Когаловский: «информационной системой называется комплекс, включающий вычислительное и коммуникационное оборудование, программное обеспечение, лингвистические средства и информационные ресурсы, а также системный персонал и обеспечивающий поддержку динамической информационной модели некоторой части реального мира для удовлетворения информационных потребностей пользователей».

Стандарт ISO/IEC 2382-1 дает следующее определение: «Информационная система ‒ система обработки информации, работающая совместно с организационными ресурсами, такими как люди, технические средства и финансовые ресурсы, которые обеспечивают и распределяют информацию».



Российский ГОСТ РВ 51987 определяет информационную систему как «автоматизированную систему, результатом функционирования которой является представление выходной информации для последующего использования».

В узком смысле информационной системой называют только подмножествокомпонентов ИС в широком смысле, включающее базы данных, СУБД и специализированные прикладные программы. ИС в узком смысле рассматривают как программно-аппаратную систему, предназначенную для автоматизации целенаправленной деятельности конечных пользователей, обеспечивающую, в соответствии с заложенной в неё логикой обработки, возможность получения, модификации и хранения информации.

В любом случае основной задачей ИС является удовлетворение конкретных информационных потребностей в рамках конкретной предметной области. Современные ИС де-факто немыслимы без использования баз данных и СУБД, поэтому термин «информационная система» на практике сливается по смыслу с термином «система баз данных».

Миссия информационных систем – производство нужной для организации информации для обеспечения эффективного управления всеми ее ресурсами , создание информационной и технологической среды для осуществления управления организацией.

Потребность постоянно повышать производительность и эффективность труда работников, выпускать больше качественной продукции и т.п. послужили основанием к созданию автоматизированных систем. Автоматизация информационных процессов, способствуя ликвидации многих рутинных операций, повышая комфортность и одновременно эффективность работы, предоставляя пользователям новые, ранее неведомые, возможности работы с информацией, создаёт и новые проблемы, решение которых может быть осуществлено лишь на базе использования общенаучных методов и новых информационных технологий.

Автоматизированная информационная система (Automatedinformationsystem, AIS) - это совокупность программных и аппаратных средств, предназначенных для хранения и (или) управления данными и информацией, а также для производства вычислений.

Основная цель АИС – хранение, обеспечение эффективного поиска и передачи информации по соответствующим запросам для наиболее полного удовлетворения информационных запросов большого числа пользователей.

АИС можно представить как комплекс автоматизированных информационных технологий, составляющих информационную систему, предназначенную для информационного обслуживания потребителей. В АИС обычно применяются автоматизированные рабочие места (АРМ) на базе персональных ЭВМ, распределённые базы данных, программные средства, ориентированные на конечного пользователя.

Основное назначение автоматизированных информационных систем не просто собрать и сохранить электронные информационные ресурсы, но и обеспечить к ним доступ пользователей. Одной из важнейших особенностей АИС является организация поиска данных в их информационных массивах (базах данных). Поэтому АИС практически являются автоматизированными информационно-поисковыми системами (АИПС),

Автоматизированная информационно-поисковая система - программный продукт, предназначенный для реализации процессов ввода, обработки, хранения, поиска, представления данных т.п.

Обычно в системах управления выделяют три уровня : стратегический, тактический и оперативный. На каждом из этих уровней управления имеются свои задачи, при решении которых возникает потребность в соответствующих данных, получить эти данные можно путем запросов в информационную систему. Эти запросы обращены к соответствующей информации в информационной системе. Информационные технологии позволяют обработать запросы и, используя имеющуюся информацию, сформировать ответ на эти запросы. Таким образом, на каждом уровне управления появляется информация, служащая основой для принятия соответствующих решений.

ü Информационный обмен в строительстве

Информационная основа ‒ важная составляющая сферы строительства. Каждый строительный объект имеет свой жизненный цикл, который в общепринятом понимании включает в себя этапы проектирования, подготовки производства и возведения объекта, его последующей эксплуатации, одной или нескольких модернизаций и возможной ликвидации объекта, исчерпавшего свой потенциал. При этом каждый из этапов может быть разделен на отдельные стадии, фазы и другие модули, имеющие количественные и качественные параметры и характеристики. Именно такой подход позволяет достаточно адекватно моделировать создание объекта в виде строительного производственного процесса, имеющего иерархическую и достаточно разветвленную структуру.

Организация информационного пространства объекта, поэтапно формируемая в процессе его жизненного цикла, требует сегодня значительных затрат, подчас сопоставимых со стоимостью материальных ресурсов на строительство самого объекта. Однако, как показывает анализ строительной практики, альтернативы такому подходу нет ‒ информатизация строительного комплекса становится одним из главных элементов научно-технологического развития отрасли.

В настоящее время существует множество программ для строительства, позволяющих выполнить расчеты и визуализировать их результаты. Практически не осталось ограничений по расчету сооружений любой сложности - в статике и динамике, в упругой и неупругой стадиях работы, с учетом последовательности и технологии возведения, включая изменение конструктивной схемы и появление новых нагрузок при реконструкции.

Новые информационные технологии позволяют унифицировать нормативную и информационную базу проектирования, организовать международную техническую и экономическую кооперацию с применением единых методов, алгоритмов и программ.

По-прежнему широкое применение в мире находят автоматизированные системы проектирования. Автоматизация повышает качество работ, снижает материальные затраты, сокращает сроки проектирования, увеличивает производительность труда инженерно-технических работников. Системы автоматизированного проектирования дают возможность на основе новейших достижений фундаментальных наук совершенствовать методологию этого процесса, стимулировать развитие математической теории проектирования сложных систем и объектов. Современное проектирование в области архитектуры, конструирования, дизайна интерьера сейчас уже трудно представить без применения средств компьютерной графики. Огромные потенциальные возможности, заложенные в технологию цифровой обработки изображений, позволяют в короткие сроки получать впечатляющие результаты.

ü Средства автоматизации информационных процессов

Целью автоматизации информационных процессов является повышение производительности и эффективности труда работников, улучшение качества информационной продукции и услуг, повышение сервиса и оперативности обслуживания пользователей. С её помощью ликвидируются рутинные процедуры, сокращается время выполнения заданий, преобразуются, а порой и полностью изменяются технологические процессы, предоставляются пользователям новые виды информационных услуг и продуктов. Автоматизация позволяет преобразовать и видоизменить отдельные технологические процессы, а порой – все основные традиционно используемые технологии. Она предоставляет пользователям новые, ранее неведомые, возможности работы с информацией и одновременно создаёт новые проблемы, решить которые можно лишь используя общенаучные методы и более новые НИТ.

Средствами автоматизации информационных процессов являются программное, техническое, лингвистическое, организационное и правовое обеспечение, используемые или создаваемые при проектировании информационных систем и обеспечивающие их эксплуатацию.

Программное обеспечение представляет инструментальную среду программистов, прикладные программы для соответствующих ЭВМ и установленные на них операционные системы. Это языки программирования, операционные системы, сетевое программное обеспечение, редакторы (текстовые, связей, табличные и др.), библиотеки программ, трансляторы, утилиты и др. Главными среди них являются программные комплексы АИС – системы управления базами данных (СУБД). Их оболочки – это автоматизированные информационно-поисковые системы (АИПС) широкого применения.

Техническое обеспечение АИС включает средства ввода, обработки, хранения, поиска и передачи/приёма информации. Ввод, обработка и хранение данных – стандартные составляющие ЭВМ. Поиск информации осуществляется на основе использования специального ПО. Средства передачи информации представляют собой сетевое и телекоммуникационное оборудование ЭВМ, системы и средства связи.

К лингвистическому обеспечению обычно относят:

· типы, форматы, структура информации (данных, записей, документов);

· языковые средства описания (ЯОД, словари данных) и манипулирования данными (ЯМД);

· классификаторы, кодификаторы, словари, тезаурусы и т.п.

В состав организационного обеспечения АИС входят структурные подразделения организации, её использующей, осуществляющие управление технологическими процессами и поддержку работоспособности системы, а также документация для обеспечения эксплуатации и развития системы.

Правовое обеспечение АИС – это совокупность правовых норм, регламентирующих правоотношения при создании и функционировании АИС. На этапе разработки АИС оно включает нормативные акты, связанные с договорными отношениями разработчика и заказчика системы, с регулированием отклонений процесса разработки системы, с обеспечением процесса разработки различными ресурсами. На этапе эксплуатации системы – определяет её статус в процессе управления, правовые положения компетенции отдельных структур АИС и организации их деятельности, порядок создания и использования информации в АИС, правовое обеспечение безопасности функционирования АИС. Правовое обеспечение включает нормативные документы, регламентирующие деятельность АИС.

1 ОБЩИЕ ВОПРОСЫ АНАЛИЗА ПОТРЕБИТЕЛЬСКОГО КАЧЕСТВА ИНФОРМАЦИОНЫЫХ СИСТЕМ СТРОИТЕЛЬНЫХ ОРГАНИЗАЦИЙ.

1.1 Особенности и структура информационных систем строительных организаций.

1.2 Виды и классификация компонентов информационных систем строительных организаций.

1.3 Характеристики потребительского качества компонентов информационных систем строительных организаций.

2 МЕТОДЫ СРАВНИТЕЛЬНОГО АНАЛИЗА И ВЫБОРА КОМПОНЕНТОВ ИНФОРМАЦИОННЫХ СИСТЕМ СТРОИТЕЛЬНЫХ ОРГАНИЗАЦИЙ.

2.2 Сравнительный анализ сметного программного обеспечения по критерию функциональной полноты.

2.3 Анализ и выбор компонентов ИС строительных организаций на основе экспертных методов.

3 ВИЗУАЛЬНОЕ И ЭКОНОМИКО-СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ИНФОРМАЦИОННЫХ СИСТЕМ СТРОИТЕЛЬНЫХ ОРГАНИЗАЦИЙ.

3.1 Построение информационной модели ИС строительной организации на основе языка UML.

3.2 Моделирование трудозатрат пользователей ИС строительных организаций.

3.3 Определение необходимого числа лицензий на программное обеспечение в ИС строительной организации.

Рекомендованный список диссертаций

  • Сравнительная оценка потребительского качества программных средств автоматизации делопроизводства 2002 год, кандидат экономических наук Пахомов, Евгений Вячеславович

  • Налоговый учет: экономико-математические модели, методы и программные средства для оценки и минимизации затрат ресурсов на ведение и мониторинг 2011 год, доктор экономических наук Родина, Ольга Валерьевна

  • Формализованный анализ предметной области и выбор системы поддержки принятия решений в управлении предприятиями: На примере предприятий хлебопродуктов 2003 год, кандидат экономических наук Чувиков, Сергей Владимирович

  • Разработка автоматизированной системы определения стоимости строительства в режиме удаленного доступа 2007 год, кандидат технических наук Спицын, Александр Викторович

  • Формирование информационного обеспечения для построения и выбора систем автоматизации бухгалтерского учета в бюджетных организациях: На примере высших учебных заведений 2002 год, кандидат экономических наук Широбокова, Светлана Николаевна

Введение диссертации (часть автореферата) на тему «Информационные системы строительных организаций: моделирование и оценка потребительского качества»

Актуальность темы диссертационного исследования. Строительный комплекс Российской Федерации занимает одну из ключевых позиций в экономике страны. Согласно данным Росстата в 2010 году среднегодовая численность занятых в строительстве составила 5266,5 тыс. чел. или 7,8% процентов общего числа занятых в экономике. Объем строительных работ при этом составил 3998,3 млрд. руб. На 1 января 2010 года в России в сфере строительства работало более 175 тысяч организаций 1.

В деятельности современных строительных организаций информационные технологии играют значительную роль, способствуя повышению производительности труда и улучшению качества принимаемых решений. Разработано большое число программных систем, используемых на различных стадиях строительного процесса, в организациях, представляющие разные звенья договорных отношений, специалистами различного профиля.

Сметное программное обеспечение многократно повышает производительность труда инженера-сметчика, позволяет обмениваться информацией, проводить экспертизу сметных проектов, отражать результаты выполнения строительно-монтажных работ, формировать отчетные документы с минимальными затратами времени, контролировать исполнение строительных смет. Программное обеспечение для календарного планирования широко используется при управлении строительными проектами и позволяет внести значительные изменения в организацию процесса строительства. Специализированное программное обеспечение позволяет осуществлять учет, анализ, отчетность в условиях строительной отрасли. Специалисты-проектировщики широко применяют системы, как общего назначения, так и узкоспециализированные для проектирования

1 Строительство в России. 2010: Стат. сб. - М.: Росстат., 2010. - 220 с. строительных объектов. Эти и другие компоненты, объединенные между собой, составляют основу информационной системы (ИС) строительной организации.

Задача создания информационных систем в строительстве осложняется многообразием компонентов строительных программных систем (сегодня на рынке представлено множество вариантов программного обеспечения для тех или иных задач, например, для сметных расчетов или управления строительными проектами), необходимостью их интеграции, требованием учета специфических особенностей строительной отрасли.

Таким образом, проблема анализа потребительского качества информационных систем строительных организаций является актуальной.

Степень изученности исследуемой проблемы. Проблемам автоматизации проектного и сметного дела, а также вопросам автоматизации управленческих процессов в строительстве посвящены научные труды ряда исследователей: С.А. Баркалова, В.М. Васильева, Д.Б. Виноградова, П.В. Горячкина, A.A. Гусакова, A.M. Ивянского, A.B. Остроуха, Ю.П. Панибратова, Г.Ф. Пеньковского, В.И. Теличенко и других.

Проблемам моделирования информационных систем и анализа их потребительского качества посвящены труды K.P. Адамадзиева, Б. Боэма, Г. Буча, А. Джекобсона, В.В. Дика, А.И. Долженко, A.A. Емельянова, E.H. Ефимова, В.В. Липаева, Дж. Рамбо, Ю.Ф. Тельнова, E.H. Тищенко, М. Фаулера, Г.Н. Хубаева, И.Ю. Шполянской и других.

В то же время, пока не разработано комплекса моделей и методов для оценки потребительского качества информационных систем строительных организаций, учитывающих специфику строительной отрасли. Таким образом, проблемы приложения математических и инструментальных методов к задаче оценки потребительского качества информационных систем строительных организаций нуждается в дальнейшей разработке. Эти обстоятельства обусловили выбор темы диссертационного исследования, предопределили его цели, задачи и структуру.

Объект и предмет исследования. Объектом исследования являются предприятия всех форм собственности, относящиеся к строительному комплексу. Предметом исследования выступает автоматизация проектно-сметных работ, управленческих и учетных процессов в строительных организациях.

Цель диссертационного исследования. Основной целью диссертационного исследования является разработка комплекса моделей оценки потребительского качества для построения информационных систем строительных организаций.

Достижение поставленной цели потребовало решения следующих задач:

Классификация компонентов ИС строительных организаций;

Построение и исследование перечня характеристик потребительского качества компонентов ИС строительных организаций;

Сравнительный формализованный анализ сметного программного обеспечения по критерию функциональной полноты;

Разработка универсальной методики анализа и выбора компонентов ИС строительной организации;

Визуальное моделирование структуры и динамики ИС строительных организаций с помощью языка иМЬ;

Разработка имитационной модели бизнес-процессов ИС строительной организации.

Теоретическую и методологическую основу исследования составили труды отечественных и зарубежных ученых, посвященные проблемам экономики строительства, вопросам разработки и применения программного обеспечения в строительстве, автоматизации управленческой деятельности, методам экономико-математического моделирования, математической статистики, методам объектно-ориентированного анализа предметной области, законодательные и нормативные акты Правительства РФ, Госстроя РФ, материалы научных конференций и публикаций в периодической печати.

Эмпирической базой исследования являлись экспериментальные и статистические данные, собранные автором в процессе эксплуатации ИС ряда строительных организаций, а также данные отчетности этих организаций по выполняемым сметным расчетам и строительно-монтажным работам.

Инструментарий исследования составили методы системного анализа, математической статистики, методика формализованного анализа сложных систем, метод анализа иерархий, экспертные методы, имитационное моделирование, унифицированный язык моделирования UML, современное программное обеспечение общего и специального назначения: MS Excel, Statistica, MathCAD, Rational Rose.

Работа выполнена в рамках паспорта специальности 08.00.13 -«Математические и инструментальные методы в экономике» п. 2.6 «Развитие теоретических основ, методологии и инструментария проектирования, разработки и сопровождения информационных систем субъектов экономической деятельности: методы формализованного представления предметной области, программные средства, базы данных, корпоративные хранилища данных, базы знаний, коммуникационные технологии».

Положения, выносимые на защиту:

1. Классификация компонентов ИС строительных организаций, включающая классификационные признаки, отражающие специфику строительной отрасли.

2. Метод сравнительной оценки по критерию функциональной полноты сметного программного обеспечения на базе сформированного перечня функциональных операций.

3. Методика выбора компонентов ИС строительных организаций, отличающаяся совместным использованием экспертных методов и методов анализа сложных систем по критерию функциональной полноты.

4. Комплекс визуальных иМЬ-моделей ИС строительных организаций, позволяющий отразить логическую структуру предметной области.

5. Имитационная модель бизнес-процессов ИС строительной организации, отличающаяся учетом затрат основных ресурсов.

Научная новизна диссертационного исследования заключается в разработке целостного инструментального обеспечения для моделирования и оценки потребительского качества ИС строительных организаций. Элементами научной новизной обладают следующие результаты:

1. Разработана классификация компонентов ИС строительных организаций, отличающаяся использованием классификационных признаков отражающих специфику строительной отрасли. В предложенный набор классификационных признаков входят: договорные отношения между строительными организациями, стадия строительного процесса, функциональное назначение, уровень специализации и др. Классификация позволяет систематизировать компоненты ИС строительных организаций при их моделировании, проектировании, интеграции, оценке потребительского качества, принимать обоснованные решения при выборе базовых элементов ИС строительной организации.

2. Адаптирован метод сравнительной оценки по критерию функциональной полноты одного из важнейших компонентов ИС строительных организаций - сметного программного обеспечения на базе сформированного перечня функциональных операций. Приведенный метод позволил систематизировать сведения о функциональной полноте наиболее распространенных систем, представленных на российском рынке, выделить группы подобных систем, ранжировать сметные программные системы, получить инструмент выбора системы, в наибольшей степени отражающий требования заказчика к функциональной полноте.

3. Предложена методика выбора компонентов ИС строительных организаций, отличающаяся совместным использованием экспертных методов и метода анализа сложных систем по критерию функциональной полноты. Методика обеспечивает получение подмножества вариантов выбора для всех необходимых компонентов ИС строительной организации, экспертное сравнение вариантов для каждого класса компонентов, формирование совокупности возможных вариантов ИС строительной организации и их ранжирование. Методика позволяет обеспечить поддержку принятия решений при создании ИС строительной организации.

4. Построен комплекс визуальных иМЬ-моделей ИС строительных организаций. Модели позволяют отразить логическую структуру предметной области, состав основных подсистем, развертывание компонентов ИС, варианты использования системы, процессы работы пользователей с ИС строительной организации. Набор диаграмм языка ИМЬ может служить основой для моделирования трудозатрат на исполнение бизнес-процессов в ИС строительной организации.

5. Разработана имитационная модель бизнес-процессов ИС строительной организации, отличающаяся учетом затрат основных ресурсов. Результаты статистического (имитационного) моделирования, позволяют: оценить вероятность выполнения конкретной операции за любое выбранное или заданное время; выявить наиболее трудоемкие группы функциональных операций; количественно оценить необходимый объем трудовых ресурсов на работу с ИС строительной организации.

Практическая значимость исследования состоит в том, что его основные положения, выводы, рекомендации, методики и алгоритмы могут быть использованы строительными предприятиями любых форм собственности для принятия решений по выбору или разработке информационных систем. Отдельные результаты диссертации могут использоваться фирмами-разработчиками программного обеспечения для строительных организаций.

Практическая апробация и внедрение результатов исследования.

Основные положения диссертационного исследования докладывались и обсуждались на научно-практических конференциях и семинарах: X Международная научно практическая конференция «Экономико-организационные проблемы проектирования и применения информационных систем»; IV Всероссийскую научно-практическую Интернет-конференцию профессорско-преподавательского состава, молодых ученых, аспирантов и студентов «Проблемы информационной безопасности»; Научно-практическая конференция «Экономические информационные системы и их безопасность: разработка, применение, сопровождение»; Вопросы экономики и права.

Отдельные результаты научного исследования реализовались в рамках НИР на тему: «Информационные системы строительных организаций: моделирование и оценка потребительского качества» по договору с РГЭУ «РИНХ» № 1277/11 от 04.05.2011г. Документы, подтверждающие внедрение, прилагаются к диссертации.

Некоторые аспекты диссертационного исследования внедрены и используются в компании ООО «Дон Ай Ти».

Публикации. По результатам диссертационного исследования опубликовано 8 печатных работ, в том числе 3 статей в журналах, рекомендованных ВАК РФ, общим объемом 2,35 печатных листа.

Логическая структура и объем работы. Диссертационная работа состоит из введения, трех глав, заключения, списка использованной литературы и приложений. Работа содержит 26 таблиц, 28 рисунков. Библиографический список включает 133 наименования.

Похожие диссертационные работы по специальности «Математические и инструментальные методы экономики», 08.00.13 шифр ВАК

  • Экономико-математические и инструментальные методы обеспечения потребительского качества проектируемых информационных систем для малых предприятий 2006 год, доктор экономических наук Шполянская, Ирина Юрьевна

  • Экономико-математические модели для оценки качества информационного обеспечения деятельности инвестиционной компании 2000 год, кандидат экономических наук Пятина, Елена Евгеньевна

  • Моделирование информационных процессов в системе управления вузом 2000 год, кандидат экономических наук Щербаков, Сергей Михайлович

  • Анализ и моделирование информационной системы учета прав на ценные бумаги 2005 год, кандидат экономических наук Долженко, Виктор Алексеевич

  • Разработка и исследование информационных систем для оценки характеристик потребительского качества программных продуктов, построенных с использованием СУБД MS Access, IC Предприятие, ORACLE 2004 год, кандидат экономических наук Кривошеева, Мария Александровна

Заключение диссертации по теме «Математические и инструментальные методы экономики», Кудинов, Дмитрий Вячеславович

ВЫВОДЫ ПО ТРЕТЬЕЙ ГЛАВЕ

1) Построен комплекс визуальных ЦМЬ-моделей ИС строительных организаций, позволяющий отразить логическую структуру предметной области, состав основных подсистем, развертывание компонентов ИС, варианты использования системы, бизнес-процессы работы пользователей с ИС строительной организации. Набор диаграмм языка ЦМЬ служит основой для моделирования трудозатрат на исполнение бизнес-процессов в рамках концепции процессно-статистического учета затрат ресурсов.

2) Выделена совокупность функциональных операций бизнес-процессов формирования сметной документации при работе с ИС строительной организации. С помощью экспертного опроса и методов фиксации на рабочем месте определены статистические характеристики частоты и времени выполнения операций.

3) Построена имитационная модель, позволяющая определять для строительного проекта трудозатраты на выполнение отдельных подмножеств операций с учетом случайного характера бизнес-процессов работы с ИС строительных организаций.

4) Получены результаты статистического (имитационного) моделирования, позволяющие: оценить вероятность выполнения конкретной операции за любое выбранное или заданное время; выявить наиболее трудоемкие группы функциональных операций; количественно оценить необходимый объем трудовых ресурсов на работу с ИС строительной организации.

ЗАКЛЮЧЕНИЕ

В ходе диссертационного исследования получены следующие теоретические и практические результаты:

1. Расширена классификация компонентов информационных систем для отражения особенностей информационных систем строительных организаций, за счет включения классификационных признаков, характеризующих: звено договорных отношений в строительстве (заказчик, подрядчик и т.д.), стадия строительного процесса (проектирования, строительно-монтажных работ и т.д.), функциональное назначение (сметное ПО, ПО управления строительными проектами и т.д.) и др.

2. Определен перечень характеристик потребительского качества, имеющих значение для компонентов ИС строительных организаций. В перечень вошли такие характеристики, как: поддержка государственных норм и правил, совместимость с общепринятыми форматами и др.

Для ранжирования перечня характеристик потребительского качества компонентов ИС строительных организаций использован метод анализа иерархий, характеристики рассматривались в качестве альтернатив. Цели первого уровня: получение прибыли и обеспечение безопасности. Цели второго уровня: поддержка принятия управленческих решений, соблюдение государственных стандартов, совершенствование бизнес-процессов, снижение трудозатрат и др. Такое ранжирование позволило определить характеристики, наиболее важные с точки зрения достижения базовых целей функционирования строительной организации.

3. На основе содержательного анализа сметного ПО, анализа научной и технической литературы, изучения программной документации и информационных материалов ведущих фирм-производителей построен наиболее полный на сегодняшний день перечень функций сметного программного обеспечения (выделено более 120 функций), позволяющий провести сравнительную оценку программных средств сметных расчетов по критерию функциональной полноты.

4. Проведен сравнительный анализ сметного программного обеспечения по критерию функциональной полноты. Были исследованы наиболее распространенные на российском рынке сметные программы. Рассчитаны матрицы и графы, согласно методике анализа, сделаны выводы. Результаты анализа позволили систематизировать сведения о функциональной полноте сметных программ, выделить группы программ, подобных по функциональной полноте, ранжировать сметные программные системы по критерию функциональной полноты.

5. Предложена оригинальная методика выбора компонентов ИС строительных организаций. Методика позволяет сформировать совокупность проектных решений для выбора всех компонентов системы: сметного ПО, проектного ПО, систем календарного планирования и т.д., причем в условиях применения как специализированных систем, так и интегрированных программных комплексов. Методика позволяет учесть важнейшие показатели потребительского качества за счет комбинирования метода функциональной полноты и экспертных оценок. Результатом применения методики является сформированная совокупность вариантов ИС строительной организации и ранжирование этих вариантов.

6. Разработаны ЦМЬ-модели ИС строительных организаций, позволяющие отразить логическую структуру предметной области, состав основных подсистем, развертывание компонентов ИС, варианты использования системы, процессы работы пользователей с ИС строительной организации. Набор диаграмм языка ЦМЬ может служить основой для моделирования трудозатрат на исполнение бизнес-процессов в ИС строительной организации.

7. Построена имитационная модель бизнес-процессов ИС строительной организации и получены результаты имитационного моделирования. В качестве основы для построения модели использованы ЦМЬ-модели ИС строительной организации. Модель позволяет определять затраты труда на исполнение бизнес-процессов с использованием ИС строительной организации при различных условиях работы. Результаты моделирования, позволяют: оценить вероятность выполнения конкретной операции за любое выбранное или заданное время; выявить наиболее трудоемкие группы функциональных операций; количественно оценить необходимый объем трудовых ресурсов на работу с ИС г строительной организации.

Список литературы диссертационного исследования кандидат экономических наук Кудинов, Дмитрий Вячеславович, 2012 год

1. Аверчев И. Программное обеспечение для строительных организаций // Технологии строительства. - 2005. - №3.

2. Агранов П.А., Курочкин А.И. Сметное дело в строительстве. Учебно-методическое пособие по выпуску сметной документации с использованием комплекса «АО». - СПб.: Слово и Дело, 2005.

3. Азаев М.Г., Мамедов Ш.Ш. Формирование комплексной информационной системы управления строительным предприятием // Сборник научных трудов. Проблемы теории и практики народнохозяйственного комплекса региона. Часть 4. Махачкала: ДГТУ, 2005.

4. Алтунджи В. Проект производства работ и его автоматизация // Строительная инженерия. 2005. - №5.

5. Ардзинов В.Д. Ценообразование и составление смет в строительстве. - СПб.: Питер, 2008.

6. Бадиков Д., Кантарович М. Информационные системы управления строительным комплексом // BYTE/Россия. 2009 (май)

7. Барановская Н.И., Котов A.A. Основы сметного дела в строительстве. -М.: КЦЦС, 2005.

8. Барановский А. Сводный сметный расчет в программе SmetaWIZARD // Сметно-договорная работа в строительстве. 2010. - №5. - С. 56-60.

9. Баркалов С.А., Бабкин В. Ф. Управление проектами в строительстве. М.: АСВ, 2003. 288 с.

10. Ю.Барканов A.C. Анализ и оценка бизнес-процессов основа реинжиниринга деятельности строительных организаций // Промышленное и гражданское строительство. - 2003 . -№ 10.

11. Боггс У., Боггс M. UML и Rational Rose, Пер. с англ. М.: Издательство «ЛОРИ», 2000. - 580 с.

12. Боровиков В. STATISTICA: искусство анализа данных на компьютере. -СПб.: Питер, 2003. 688 с.

13. Боэм Б., Браун Дж., Каспар X., Липов М., Мак-Леод Г., Мфит М. Характеристики качества программного обеспечения. М.: Мир, 1981. - 208 с.

14. Брук Б.Н., Бурков В.Н. Методы экспертных оценок в задачах упорядочивания объектов/Известия АН СССР. Техническая кибернетика. -1972. №3.

15. Бузырев В. В., Панибратов Ю. П., Федосеев И. В. Планирование на строительном предприятии. М.: Academia, 2005. - 332 с.

16. Бурдачева H.A., Мовчан C.B., Азарова A.B. Информационное моделирование процессов управления в строительстве // Вестник Московского государственного строительного университета. 2009. - № 4. - С.324-325.

17. Васильев В.М., Панибратов Ю.П., Резник С.Д. Управление в строительстве. СПб.: СПбГАСУ, 2010. - 271 с.

18. Вендров A.M. Проектирование программного обеспечения экономических информационных систем. М.: Финансы и статистика, 2000. -352 с.

19. Верескун В.Д., Воробьев B.C. Имитационная модель информационных процессов в организационных структурах управления // Известия высших учебных заведений. Строительство. 2007. - № 8. - С. 43-49.

20. Виноградов Д.Б. Автоматизация связи бухгалтерии и сметного дела // Строительная инженерия. 2005. - № 7.

21. Волкова В.Н., Денисов A.A. Основы теории систем и системного анализа. СПб.: Издательство СПбГТУ, 1997. - 510 с.

22. Вязовой В. Системы управления проектами в строительных компаниях // Управление проектами. 2004. № 1. - С. 18-22.

23. Гаврилов В.И., Отман В.Х. Информационные технологии в технологическом процессе проектирования // Промышленное и гражданское строительство. 2006. - № 3. - С. 23-25.

24. Гарифуллина Р.И. Анализ программных систем для расчета сметной стоимости строительства // Вестник ИНЖЭКОНа. Серия: Экономика. 2009. -Т.28. -№1. - С. 274-277.

25. Гарифуллина Р.И. Некоторые подходы к расчету экономической эффективности информационных систем управления строительными проектами // Вестник ИНЖЭКОНа. Серия: Экономика. 2009. - № 3. - С. 262-265.

26. Гинзбург В.М. Проектирование информационных систем в строительстве. Информационное обеспечение. М. : АСВ, 2002. - 320 с.

27. Гусаков A.A. Архитектурно-строительное проектирование. Методология и автоматизация. М.: Стройиздат, 1996. - 656 с.

28. Дессерт А.Е. Интегральная классификация информационных систем // Экономика строительства. 2008. - № 2. - С. 53-57.

29. Дзирне Ю. Сметные программы. Новые критерии выбора // Сметно-договорная работа в строительстве. 2011. - №1.

30. Дикман JI. Г. Организация строительного производства. М.: АСВ, 2006. - 608 с.

31. Долженко А.И. Моделирование корпоративной информационной системы // Изв. вузов. Сев.-Кав. регион. Обществ, науки. 2006. - № 2 (134). - С. 50-55.

32. Долженко А.И. Управление информационными системами: Учебное пособие Ростов-н/Д: РГЭУ «РИНХ», 2008.- 197 с.

33. Дубовик И. Как автоматизировать составление строительных смет. -Ростов-на-Дону: Феникс, 2009. 288с.

34. Едличка С.Ю., Обухова J1.B. Автоматизация организации и управления строительством объекта // Промышленное и гражданское строительство. 2007. - №2. - С. 59-61.

35. Ефимов E.H. Экспериментальные методы оценки потребительского качества распределенных информационных систем. Ростов-на-Дону: РГЭУ «РИНХ», 2001.-219 с.

36. Ивянский A.M. Программа «Гектор: Сметчик-строитель» простота и функциональность //"Сметно-договорная работа в строительстве. - 2010. - №3. -С. 58-62.

37. Ивянский A.M., Шутров С.Э. Автоматизация разработки проектно-сметной документации с использованием сметно-нормативных баз 2001 г. // Инженерно-строительный журнал. 2010. - №3. - С. 19-23.

38. Игнатьев О.В. Информационные модели в строительстве // Вестник Волгоградского государственного архитектурно-строительного университета. Серия: Естественные науки. 2007. - № 6. - С. 24-30.

39. Игольников B.C. Автоматизация компонент успеха современной строительной организации // Промышленное и гражданское строительство. -2009. -№ 8.-С. 13.

40. Информационные системы в экономике: Учебник/Под ред. В.В. Дика. М.: Финансы и статистика, 1996. - 272с.

41. Исраилова Я.В. Инновационное управление специализированной строительной фирмой // Транспортное дело России. 2008. - № 6. - С. 129-131.

42. Каменецкий М.И., Донцова JI.B. Строительный комплекс: состояние, проблемы, основные тенденции долгосрочного развития // Экономика строительства. 2008. - № 3. - С. 2-19.

43. Каплан E.J1. Управление строительной компанией. СП,.:ГИОРД, 2009.- 144 с.

44. Кемени Дж., Снелл Дж. Кибернетическое моделирование: Некоторые

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

При разработке решения специалистами IBS были использованы лучшие мировые практики управления строительными проектами, реализованные в зарубежных информационных платформах и весь опыт внедрения систем управления в строительных организациях, с учетом потребностей российских заказчиков и локальных требований в области капитального ремонта и строительства.

Уникальное отличие IBS СМР IM состоит в том, что специалистам IBS удалось увязать в единый информационный контур все функциональные подразделения, задействованные в реализации проектов по капитальному ремонту и строительству (бухгалтерию, экономическую службу и производственные подразделения) по всему циклу строительства объекта – от инвестиционной фазы, планирования работ до обеспечения ресурсами и контроля работ, их учета и закрытия.

В частности, на инвестиционной фазе система позволяет вести основные характеристики объектов работ, договоры по этим объектам (в том числе генподряда, субподряда), видеть календарный график выполнения работ по договору.

На этапе планирования работ пользователи могут вести в единой системе календарно-сетевые графики, которые составляются с учетом информации о доступности ресурсов, а также с учетом сметных ограничений. Система позволяет загружать сметы (реализована интеграция с основными сметными системами) и формировать на их основе ресурсные ведомости, технологический план-график, потребности в персонале, строительных машинах и механизмах. Интеграция процессов и данных в единой системе позволяет исключить конфликты диспетчеризации с точки зрения доступности техники и персонала при выполнении планов.

В процессе строительства система дает возможность контролировать, а также анализировать ход работ и достижение экономических показателей, позволяя сопоставлять затраты на строительство в трех основных ракурсах – сметном, плановом (на основе календарно-сетевого графика), а также по фактическим затратам. Система отслеживает процесс закупок, поступления и списания материалов на конкретном объекте в привязке к выполненным строительным работам. Формы списания материалов (М-29) в системе формируются в соответствии с актами выполненных работ (КС-2), что позволяет отслеживать ненормативный расход материалов (отклонения от сметы в натуральном и стоимостном выражении), контролировать дисциплину учета и экономические показатели объекта в процессе реализации проекта строительства.

Отслеживать реальную загрузку техники на объектах, учитывать ее при планировании строительных работ возможно благодаря специализированной функциональности системы. Решение позволяет производить планирование, диспетчеризацию и учет работы строительных машин на конкретных объектах строительства в привязке к конкретным операциям, анализируя соответствие потребностей сметным расчетам, и, таким образом, вести детализированный учет затрат на машины и механизмы (в то время как обычно строительные компании учитывают затраты на строительные машины и механизмы «котловым методом»). Также ведется учет расхода горюче-смазочных материалов и его контроль с учетом пробега, сезона и т.д.

В целом опыт внедрения системы показывает, что ее использование способно дать реальный экономический эффект, как за счет улучшения информационного обмена, так и за счет более эффективной организации бизнес-процессов, поскольку решение содержит в себе эффективную операционную модель управления строительно-монтажными работами.

«Опыт больших строек последних лет показал, что есть огромный потенциал улучшения качества управления строительством в России. Решение, которое мы предлагаем, позволяет за счет контроля над процессом строительства повышать экономическую эффективность проектов. IBS СМР IM помогает увидеть отклонения от сметных норм, связанные с перерасходом материалов, строительных машин и механизмов, персонала, контролировать сроки работ, проводить корректировку сметных расчетов в процессе выполнения работ по проекту. Это не просто система учета – мы предлагаем определенную модель бизнес-процессов, которая построена на требованиях Минстроя, госстандартах, традициях рационального управления и передовых практиках строительных компаний и нашей экспертизе», – пояснил Петр Сычев, ведущий консультант Департамента производства компании IBS.

Решение, прежде всего, будет полезно организациям, ведущим работы по капитальному ремонту и строительству на нескольких объектах собственными силами или с привлечением субподрядчиков, и которые используют сметные расчеты для определения стоимости этих работ. В том числе это могут быть компании отраслей строительства, промышленного производства, сетевого ритейла, энергетики, связи и пр.

«Это решение высокой степени готовности и требует небольших донастроек под особенности деятельности каждого заказчика. Однако, по опыту, вместе с внедрением требуется проведение организационных изменений в компании заказчика – совершенствование методологии управления строительно-монтажными работами и внедрение новой производственной культуры, которую несет с собой наше решение. Для строительных компаний система позволит повысить прозрачность и выйти на новый уровень экономической эффективности», – отметила Марина Денисенко, руководитель отделения EAM и MES решений Департамента производства компании IBS.

ПОДПИСЫВАЙТЕСЬ НА НАШИ СТРАНИЦЫ.
МЫ ЕСТЬ В

Часто приходится слышать, что главная причина этого кроется в высокой рентабельности в среднем по отрасли: ведь там, где денег пока хватает, не может быть серьёзного интереса к комплексной автоматизации - и что, мол, интерес появится со временем, когда в силу естественных рыночных процессов начнётся неизбежное снижение цен и, следовательно, доходности строительного рынка, когда наступит ситуация, в которой выживет только тот, кто лучше всех считает.

Этому взгляду обычно противопоставляют другой: там, где денег хватает, тем более нужен строгий учёт, позволяющий избежать коррупции и предотвратить воровство. И всё же главной причиной столь низкого уровня автоматизации строительных компаний является специфичность отрасли: любая строительная компания нуждается в автоматизации слишком большого количества участков деятельности, при этом непременно необходима их тесная интеграция между собой.

Итак, какие же процессы необходимо автоматизировать в строительной компании прежде всего?

Контроль расходов и доходов

В первую очередь автоматизации подлежит контроль расходов и доходов. Строительным компаниям требуется нечто, что позволит иметь под рукой информацию, сколько денег есть и сколько ожидается, какие были затраты и на что, кто их совершал, какие затраты планируются, хватит ли денег и какой ожидается финансовый результат. В подавляющем большинстве строительных компаний логика именно такая: в первую очередь учёту подлежит чистый денежный поток, вне товарного потока, учёта себестоимости или, тем более, прибыльности. Под себестоимостью строители зачастую понимают просто фактическую сумму совершённых затрат на тот или иной строительный объект, а под прибыльностью - разницу между приходом и расходом денежных средств. Таким образом, главное в автоматизации строительных компаний - оперативное бюджетирование (вперёд на месяц или два) и контроль над расходами по заявкам.

Управление договорами

Второй по степени важности участок строительного бизнеса, требующий автоматизации, - контроль расходов, работ и задолженностей по договорам подряда и планирование поступлений по договорам купли-продажи, аренды, долевого участия и проч. Здесь ключевой задачей является возможность планирования выполнения работ по каждому договору подряда и график оплат как по расходным контрактам, так и по договорам реализации. Учёт взаимоотношений с заказчиками и подрядчиками интересен, прежде всего, с точки зрения задолженностей и исполнения планов, а по договорам реализации - с точки зрения плана поступления средств и, опять же, возникающих задолженностей клиентов.

Управление проектами

Управление проектами - тема, неизменно интересующая всех строителей. Ведь это очень красиво - календарный график строительства на стене, на котором всё наглядно и понятно. Практически любая строительная компания прошла этот путь: принятие решения о тотальном планировании и управлении проектами; осознание того, что главное - не запланировать, а отследить выполнение; затем понимание того, что собрать «сводки с полей» - задача, требующая такого количества ресурсов, что легче просто от этого отказаться. Так и получилось, что в большинстве строительных компаний управление проектами - это всего лишь красивая диаграмма на стене, подписанная ответственными за проект лицами. Действительно, отслеживать исполнение задач в строительном проекте - чрезвычайно трудоёмкое дело, ведь конкретные исполнители в этой отрасли - люди, далёкие от компьютера, так что в каждом случае требуется дублирование функций, что всегда очень дорого. Не помогают и придуманные бумажные формы отчётности: с бумагой прораб тоже работает крайне неохотно. Поэтому лучшим решением для управления строительными проектами является контроль исполнения проекта по реперным точкам. «Реперными точками» называют важнейшие точки проекта. Поскольку их не очень много, собрать по ним фактические данные об исполнении задач вполне реально. Таким образом, в прикладном смысле единственно возможное управление проектами в строительстве - это календарное планирование, расчёт необходимых ресурсов для определения расходной части бюджета и отслеживание исполнения проекта по реперным точкам.

Составление строительных смет

Прежде чем что-либо построить, необходимо знать, как это будет происходить, какие нужны материалы и во сколько обойдётся весь проект: так появляется необходимость в смете строительного объекта. Сметная деятельность строго регламентирована на государственном уровне, и существует достаточное количество программ для подготовки сметной документации - этот участок в строительных компаниях наиболее благополучен с точки зрения автоматизации.

Прочая автоматизация

Кроме главных бизнес-процессов, описанных выше, в строительной компании, в зависимости от её размера и специализации, может существовать потребность в автоматизации управления снабжением строительных объектов, программах для бизнес-планирования (при расчёте эффективности вложений), программах для управления кредитами при достаточном объёме заёмных средств. Ну и, наконец, строительная компания, как и любое другое предприятие, автоматизирует кадровый учёт и бухгалтерию.

Именно обилием разнообразных бизнес-процессов, требующих автоматизации, и обусловлено отсутствие на рынке -систем приемлемого программного продукта для строительной отрасли и, соответственно, в целом низкий уровень комплексной автоматизации среди строительных компаний. Надо отметить, что для каждой отдельной бизнес-задачи существуют различные варианты решения и автоматизации. Любая строительная компания постепенно обрастает компьютерными программами, автоматизирующими работу различных подразделений. Известная в других отраслях «проблема двойного ввода» здесь превращается в проблему ввода десятикратного - одни и те же данные вносятся в совершенно разные программы, никак не связанные друг с другом. Даже трудно оценить трудозатраты и финансовые потери отрасли в результате такого положения дел. Конечно, в качестве выхода из ситуации можно было бы предложить интеграцию разнородных приложений между собой.

Но здесь есть два «но». Во-первых, в силу большого количества конкретных задач и, соответственно, возможных программ для их автоматизации, появление готового интеграционного решения маловероятно (невозможно предусмотреть интеграцию чего угодно с чем угодно). Во-вторых, стоимость настройки интеграции такого количества продуктов друг с другом может быть очень и очень высока. Это тем более знаменательно, что «ноги» большинства проектов по интеграции «растут» из желания сэкономить. На самом же деле экономия получается весьма сомнительная - интеграционные проекты часто выливаются в суммы даже бульшие, чем замена разрозненных программ на одну, но покрывающую все необходимые задачи. Поэтому большинство поставщиков систем управления предприятиями озабочены созданием готового комплексного решения по автоматизации строительных компаний.

Хотя потребность в комплексной автоматизации строительных компаний осознана разработчиками -систем сравнительно недавно, уже сейчас на рынке представлены интегрированные решения от нескольких производителей. Рассмотрим эти решения подробнее.

Система автоматизации Бюджетирование Управление затратами Управление договорами Управление проектами Составление смет Управление снабжением Бизнес-планирование Управление кредитами Бухгалтерский учёт Сроки внедрения Цена на одно рабочее место, у.е.

Галактика ERP, модуль "Управление строительством"

В самом модуле - нет, в системе - да да да Интеграция с Primavera и MS Project Интеграция со сметными программами (АРПС-формат) да да да да от 3-6 мес.до 2-3 лет
да да да да да да да да да от 1 мес.

Oracle JD Edwards EnterpriseOne «Управление проектами»

Проектные бюджеты и общехозяйственные бюджеты - да. да да Да. + Интеграция с Oracle Primavera и/или MS Project Интеграция со сметными программами да да да да 6-10 мес. 1000 - 2300

MAG Builder для Microsoft Dynamics AX

да да да Интеграция с MS Project да (без сметно-нормативных баз) да Интеграция c Plan Designer, Comshare,Geac Performance Management да да 3-6 мес. 5000

Ланит-строительство

да да да да Интеграция с WinSmeta, Smeta . ru да да да да от 3-х мес. до 1,5 лет 2500

SAP for Engineering, Construction and Operations

да да да да да да нет да да 6-9 мес. 5000

Строительные решения на платформе системы "Алеф"

да да да да + интеграция с Primavera да да да нет да 6-9 мес. 2000

Программный комплекс "Гектор-строитель"

нет нет нет да + интеграция с Primavera и Spider да + возможность интеграции с другими сметными программами нет нет нет Интеграция с программами бухучета Поставка + обучение до 2-х недель 250 - 600

Бурное развитие строительной индустрии и высокие нормы доходности позволяли не обращать внимания на потери в различных стадиях проекта, так как рынок при его росте прощал все ошибки в сфере управления и финансирования.

Но сегодня времена легких денег и высокодоходных проектов прошли, и собственники все пристальнее смотрят на процессы проектного управления. В связи с этим под особое внимание попадают системы управления проектами и управленческого учета. Кроме того, из мелких компаний, ведущих один-два проекта, многие выросли в лидеров отрасли и справляться с возросшим потоком информации и тем более контролировать ход и качество реализации проектов оказались не в состоянии. Мы опускаем такие вопросы, как изношенность основных фондов, серьезный уровень непрофессионализма на рынке на всех стадиях управления, юридические и внутрикорпоративные сложности (хотя понятно, что всё это в итоге является основным препятствием во внедрении систем управления).

Система управления — это прежде всего хорошо настроенный инструмент для бизнеса. Но важна не только «скрипка Страдивари», крайне необходим и мастер, который возьмёт инструмент и сыграет на нем. Таким образом, мы поговорим об искусстве - искусстве создания систем управления бизнесом и искусстве их применения в строительной индустрии, хотя данные правила относятся к любой отрасли после их соответствующей корректировки. Ведь трудно придумать что-то новое в проектном управлении или российском бухгалтерском учете, в бюджетировании и управленческом учете. Различия - в деталях, которые и формируют специфику каждой отрасли и каждого предприятия. Рассмотрев роль информационных систем на разных этапах строительного процесса, перейдем к конкретному опыту девелоперской компании «Система-Галс», представляющей бизнес-направление «Строительство и недвижимость» АФК «Система».

Информационные системы на разных этапах строительства

Структура организационного построения строительного процесса позволяет всех участников этого рынка разделить на несколько крупных классов согласно их специализации. Причем крупные строительные концерны, как правило, охватывают сразу несколько видов деятельности. Нас подобное деление будет в первую очередь интересовать с точки зрения потребностей в информационных системах различных организационных единиц, участвующих в строительном процессе. В этой статье мы остановимся на следующем наборе классов: инвестор/управляющая компания, заказчик, подрядчик, эксплуатирующая компания, проектировщик. Теоретически в отдельный класс можно выделить риэлторов, но для стоящей перед нами цели - рассказать об информационных системах в строительстве и их взаимодействии - в этом нет необхо­димости.

Инвестор/управляющая компания

Специфика деятельности инвестора/управляющей компании заключается в развитии проекта как бизнес-идеи. Основным показателем, который отслеживают такие структуры, является эффективность проекта как бизнеса. Поэтому инвестору прежде всего необходимы системы, позволяющие эффективно вкладывать деньги, контролировать и возвращать свои инвестиции. Это относится к процессам бюджетирования и управленческого учета на верхнем уровне, казначейским операциям, договорной работе, финансовому моделированию как компании в целом, так и отдельных ее проектов. Управление проектом для инвестора/управляющей компании интересно в смысле портфельного управления или управления ключевыми событиями проекта при условии, что заказчики/подрядчики работают с инвестором в поле одной идеологии, иначе возникают сложности в интерпретации первичных данных из-за разницы в их детализации и агрегации.

Заказчик

Заказчик по сути своей деятельности управляет движением проекта на основной производственной стадии - предпроект, проект, строительно-монтажные работы. Именно от заказчика зависит коммерческий образ проекта, его технико-экономические показатели и движение. В силу этого особое внимание уделяется управлению проектами, детальному отслеживанию их технико-экономических показателей, сроков и бюджетов, что накладывает соответствующие требования на детализацию данных в системах. При тех же основных бизнес-процессах, требующих автоматизации, глубина детализации может и должна на порядки превосходить детализацию инвестора. И совершенно естественно, что система отчетности заказчика является более сложной и более многоуровневой, чем отчетность инвестора.

Подрядчик

Основные процессы подрядчика - это реализация делегированного объема работ в сроки и бюджеты, установленные заказчиком. По сути он работает по установленному заказчиком лимиту стоимости. Таким образом проектное управление выходит на первое место, бюджетирование и управленческий учет ведутся строго в рамках учета проектного. Графики мероприятий, бюджеты проектов и фактическое их исполнение, оперативное планирование и казначейские операции - всё это может проводиться в рамках системы управления проектами. Заказчику передается отчетность в установленном виде с требуемым уровнем детализации.

Эксплуатирующая компания

В рамках своей деятельности эксплуатирующая компания прежде всего нуждается в хорошо поставленном управленческом учете. Какие-либо дополнительные бизнес-процессы отсутствуют (из рассмотрения исключена промышленная автоматизация, так как она считается частью подсистемы бухгалтерского и управленческого учета, например, в области учета расходования газа, воды, света и т. п.).

Проектировщик

Бизнес проектировщика основан на предоставлении услуг по проектированию и разработке документации и кроме документооборота специализированных систем, таких как AutoCad или ArchiCad, и бухгалтерской программы других систем не требует. Более того, данный элемент процесса весьма специфичен и обособлен от остальных и может работать в рамках единой системы только в области документооборота.

Взаимодействие участников строительного рынка посредством информационных систем

Модель взаимодействия предприятий представлена на рис. 1. Нормативные и бюджетные, базовые технико-экономические показатели спускаются от инвестора/управляющей компании к заказчику, который после уточнения и утверждения спускает их в виде задания подрядчикам. В обратном порядке как элемент системы контроллинга от подрядчика до инвестора поднимается система отчетности с полной расшифровкой понесенных затрат и причин отклонения от первоначальных показателей. В зависимости от того, аффилирован подрядчик заказчику либо инвестору или нет, различается и модель информационного взаимодействия: это может быть работа в единой системе с глубокой детализацией информации, а может быть случай, когда генподрядные организации только подают сведения о закрытии работ в согласованном формате на регулярной основе.

Стоит отметить, что в силу большого количества проектов и разной их географии необходима единая служба заказчика для координации территориальных заказчиков на местах. Это позволит установить централизованный контроль за портфелем проектов управляющей компании или инвестора. Основная функция данного подразделения - координационно-аналитическая. В задачи, которое оно решает, входит распределение проектов между территориальными заказчиками, формирование производственной программы и контроль её исполнения, помощь в решении проблемных ситуаций. Соответственно и на информационную систему возлагается определенный круг задач по связи портфельного управления проектами с управлением реализацией конкретного проекта. Но необходимо не только реализовать механизм сбора информации, самое сложное и важное - запустить управленческий процесс. В данном случае нужно добиться, чтобы все территориальные службы заказчиков вели проектный учет в соответствии с утвержденными форматами и регламентами. Более того, формат и регламент представления ежемесячной отчетности должен строго исполняться, так как он содержит основные контролируемые параметры проекта: выполнение, финансирование, условия договоров. Но эти параметры особо актуальны на стадии строительно-монтажных работ, на этапах же предпроектных проработок и исполнения проекта необходимо еще и отслеживать главные ключевые события на уровне единой службы заказчика, а также ключевые события на уровне территориальной службы, необходимые для реализации главных.

Основной механизм контроля за процессом - отчетность, которая имеет разные уровни детализации в зависимости от специфики предприятия. Взаимоотношения заказчика и подрядчика строятся на базе ежемесячной отчетности по выполнению и оплате, а также на основании контроля за ключевыми событиями и документацией.

Организация процесса девелопмента в ОАО «Система-Галс»

ОАО «Система-Галс» в своей работе покрывает практически все этапы строительного процесса. В этой части мы расскажем, какие информационные системы обеспечивают деятельность компании и как они взаимодействуют между собой. Изначально в «Системе-Галс» планировалось внедрить Oracle E-Business Suite как единое решение по бизнес-направлению «Строительство и недвижимость». Но проанализировав всю специфику деятельности компании, рассмотрев внедренные в России и в мире системы управления для строительного комплекса и оценив бюджеты и поставленные сроки, мы решили двигаться в трех направлениях: единая система документооборота, единая система проектного управления и единая система финансового управления. Все три системы формируют информационное решение с общими ключевыми справочниками, потоком информации и пользователями.

Внедрение началось с системы документооборота. Нас интересовали следующие блоки: контроль поручений, канцелярия, архив документов, бизнес-процессы. После подробного анализа представленных на рынке продуктов и проведенного тендера была выбрана система Directum.

В результате уже через два месяца заработала канцелярия, через три - контроль поручений и некоторые бизнес-процессы, а архив документов можно было создавать практически сразу. Таким образом, менее чем за полгода в системе уже работало свыше ста пользователей и более тридцати компаний.

Основная проблема, с которой пришлось столкнуться, была связана с человеческим фактором: во-первых, привычки и нежелание их менять, а во-вторых, боязнь находиться под постоянным контролем. Именно эти две причины до сих пор тормозят эксплуатацию системы документооборота.

Другие две системы четко делятся на два блока - проектный и финансовый учет. Проектный учет касается основной деятельности компании - девелопмента. ОАО «Система-Галс» реализует большое количество проектов, управляет ими, и это должно иметь прозрачную, понятную и современную основу. В качестве такой основы была выбрана система, по сути являющаяся промышленным стандартом в мировой практике управления проектами по календарному планированию, - Primavera, расширенная модулем PMControlling по учету договоров, созданию первичной документации и бюджетированию, что позволило автоматизировать управление проектами. Изначально планировалось провести опытную эксплуатацию на четырех пилотных проектах с последующей передачей в промышленную эксплуатацию. Но после настройки системы под бизнес-процессы компании было решено запускать её не по пилотной схеме, а сразу в продуктивную эксплуатацию. Таким образом, уже через два месяца в системе велось более сотни проектов.

Отдельный вопрос касается первоначальных данных. Тут возможны два варианта: ввод остатков на определенный период с дальнейшим ежедневным вводом поступившей информации либо ввод всей информации за период жизни проекта. Практически все проекты были занесены в систему по второму сценарию, с выверкой всей информации, - это значительно повысило сложность и сроки работ, но позволило получить объективные данные о состоянии проектов.

В этом процессе важную роль играет обучение сотрудников всех проектных компаний принципам проектного управления. Правила составления графиков и бюджетов, ежемесячная отчетность - всё это требовало доведения, обучения и внедрения в ежедневную деятельность компании.

Кроме того, при внедрении системы большое значение придаётся методологии, которая развивается несколько опережающими темпами. Такая параллельная разработка позволяет реализовывать необходимый функционал и проверять методологию сразу на практике, что существенно снижает время внедрения, но увеличивает риски.

Основа всех систем - это единые справочники. Прежде всего справочник проектных мероприятий, который в обязательном порядке должен содержать более тридцати работ по каждому проекту. Дальнейшая их детализация производится на усмотрение дирекций, но строго в единой структуре. Работы по инвестиционному проекту связаны со статьями бюджета, что позволяет повысить планирование до качественно нового уровня. Практически мы реализуем правильную схему работы: план мероприятий → бюджет выполнения → бюджет финансирования. Именно такая последовательность при изначально верной первичной информации гарантирует правильное планирование с достаточной степенью точности.

При выборе финансовой системы мы исходили из того, что нам необходим достижимый результат за короткое время и разумные деньги. Ситуация на сегодняшний день такова, что практически все крупные системы предлагают одинаковые возможности. Но часто оказывается, что хотя и декларируется наличие инструмента, к примеру, по бюджетированию, это совсем не означает, что вы его получите через месяц. То есть от вас потребуется кропотливая и сложная работа по настройке бюджетной модели, по ее отработке и доведению до промышленного использования. Таким образом, главное в системе - не только возможность что-то реализовать и присутствие базового функционала (как правило, его надо перерабатывать под нужды компании), но и скорость, сложность и стоимость адаптации под бизнес-модели.

Есть прекрасный пример на эту тему, который демонстрировался на системе Microsoft Dynamix AX (Axapta) по сборке велосипеда. Чем не промышленное производство? Однако действительность такова, что данный простой пример очень далеко отстоит от реальной системы, и потребуется много человеко-дней для превращения её в истинный промышленный вид.

Таким образом, проанализировав мировые и российские системы, мы склонились к платформе «1С:Предприятие». Ко всему прочему компания «1С» декларирует поддержку методологии ERP, что в принципе нас устраивало. Перечислим основные блоки, которые подверглись автоматизации:

  • бухгалтерский и налоговый учет;
  • учет и отчетность по международным стандартам;
  • бюджетное планирование;
  • управленческий учет и отчетность;
  • казначейство и платежная дисциплина;
  • учет продаж, аренды, эксплуатации недвижимости;
  • расчет зарплаты и управление персоналом;
  • учет активов и структуры юридических лиц холдинга;
  • интеграция со смежными системами.

Границы внедрения распространялись не только на «Систему-Галс», но и на все проектные и операционные компании. Одновременно с этим внутренняя команда внедрения совмест­но с комплексами прорабатывала методологические аспекты, что позволило значительно сократить сроки проекта. Основная стержневая идея состояла в том, что все системы, включая и систему управления проектами, должны основываться на едином плане счетов. Исходя из этой идеи в основу был положен план счетов МСФО, расширенный соответствующими управленческими разрезами.

Таким образом, мы получили интегрированную систему (рис. 2), состоящую из специализированных подсистем, которые полностью удовлетворяют конечных заказчиков.

И как финальный аккорд в компании был создан внутренний информационный портал.

Как мы уже отмечали выше, самой большой проблемой при внедрении является нежелание людей переходить на новую систему, поскольку для этого нужно перестраиваться, а люди в большинстве своем - консерваторы. Но все зависит от руководства. Если топ-менеджмент одобряет идею и участвует в политических вопросах проекта, то переход на новую систему должен пройти гладко. Кроме того, внутри компании надо найти менеджера, обладающего большими правами по регулированию процесса. Такой человек не должен быть простым специалистом - это менеджер не ниже заместителя финансового директора или, например, директора по автоматизации. И при этом у него не должно быть никаких других оперативных функций, кроме внедрения. Отдельно вопрос о внедрении требуется решить с главным бухгалтером, так как от него зависит итоговый переход на новую систему. Главный бухгалтер - это либо основной двигатель внедрения, либо основной его тормоз. Еще одну трудность при внедрении составляет интеграция различных систем. Эта работа влечет за собой синхронизацию огромного количества данных (как правило, справочников) между системами, что сопряжено с ошибками, за которыми приходится следить ежедневно. Как правило, интеграция требуется, если на момент внедрения большой системы уже есть хорошо отлаженная система меньшего масштаба, которую лучше оставить. Например, если при внедрении информационного комплекса уже есть работающий блок производственного учета (биллинговая система у сотового оператора, система управления проектами у девелопера или складской учет у логистической компании), то в этом случае нужно, во-первых, не разрушить его, а во-вторых, очень внимательно найти правильный ключ (код) к синхронизации и экспорту-импорту данных между системами.

Текущие ИТ-тенденции в стройиндустрии

В сегодняшнем строительном комплексе наметилась четкая тенденция к использованию информационных систем в своей деятельности. Изначально строительные компании не интересовались информационными системами в силу собственных высоких доходов и неразвитости систем управления. Но с развитием отрасли, усложнением схем финансирования, выходом на международные рынки, изменением организационных структур и ростом бизнеса появилась потребность в таких решениях (в методологии и инструментарии). В результате многие компании вступили на путь автоматизации. Но, как это обычно бывает, не проводился детальный анализ потребности, а продукты рассматривались на предмет содержания формальных блоков. Более того, в области девелопмента и строительства системы управления проектами начали развиваться только в нефтяных компаниях с западным капиталом, что же касается гражданского и инфраструктурного строительства, то здесь развитие методологий проектного управления и внедрения систем началось лишь в 2007-2008 годах. Финансовые системы, включая управленческий и бухгалтерский учет, изначально строились на различных платформах - на типизированных промышленных решениях и собственных разработках. Но в последнее время акцент стал смещаться в сторону ERP-систем как российского, так и западного происхождения. Основных причин тут две: построение вертикально интегрированных холдингов с участием производственных предприятий и структуризация схемы управления компаниями, ставящая перед ИT-системами самый широкий круг задач, решение которых кустарными методами в таблицах Microsoft Excel уже невозможно. Это бюджетирование и управленческий учет, оперативное планирование и казначейство, международная отчетность, бухгалтерский и налоговый учет, объединенные едиными справочниками и построенные на едином плане или связанной группе счетов. Таким образом, мы получаем сложную задачу, которая требует прежде всего методологического решения всех перечисленных вопросов. При этом концепцию построения всей системы должны понимать не только специалисты группы внедрения, но и управленцы производственных и поддерживающих подразделений.

На данном поле конкурируют всего четыре компании: SAP, Oracle, «1С» и Microsoft. Выбор между ними является прерогативой предприятия, и советовать тут что-либо сложно, тем более что вопрос этот часто бывает весьма политизирован. Стоит отметить только, что в последнее время все системы сильно продвинулись в направлении строительной специфики и управления проектами как на российском, так и на международном рынке. Но они предназначены для финансового сектора, в секторе же производственном всё зависит от компании и ее бизнес-процессов. Крупному заказчику, в портфеле которого находится более двух тысяч проектов в активной фазе, подойдет хорошая система управленческого учета и бюджетирования, построенная на любой платформе. В то же время для средней компании, имеющей от ста до тысячи проектов, также необходим индустриальный подход к проектному управлению, но в данном случае рассматривается более подробная детализация событий, бюджетных статей и пр. В небольших фирмах, у которых порядка пятидесяти проектов, применяется стандартный проектный подход и соответствующая методология. Следовательно, мы имеем три уровня информационных систем: промышленные, комбинированные, проектные. Инструмент реализации информационной системы на каждом уровне может быть единым (например, Primavera плюс PMControlling плюс «1C:Предприятие» или собственная разработка плюс Microsoft Dynamix AX), но могут применяться и локальные инструменты вроде Microsoft Project, которые не требуют трудоемкого внедрения.

В ближайшей перспективе в строительной отрасли, по-видимому, будут преобладать внедрения специализированных решений и модулей по проектному учету с целью совершенствования систем управления. Компании нацелены прежде всего на эффективное и профессиональное управление проектами с расчётом на растущий бизнес, а это требует соответствующего методологического и программного инструмента.

Что касается финансовых систем, то здесь будут преобладать тенденции к развитию систем, которые позволяют за приемлемые бюджетные средства и сроки выстроить полнофункциональное решение.

Денис Бадиков,
Директор Департамента развития систем корпоративного управления ОАО «Система-Галс»
[email protected]
Максим Кантарович,
Директор по инновациям ОАО «Система-Галс»
[email protected]

 

 

Это интересно: