→ Распиновка COM порта(RS232). Распиновка COM порта(RS232) Используемые уровни сигналов

Распиновка COM порта(RS232). Распиновка COM порта(RS232) Используемые уровни сигналов

Интерфейс RS-232C предназначен для подключения аппаратуры, передающей или принимающей данные (ООД - оконечное оборудование данных, или АПД - аппаратура передачи данных; DTE - Data Terminal Equipment), к оконечной аппаратуре каналов данных (АКД; DCE - Data Communication Equipment). В роли АПД может выступать компьютер, принтер, плоттер и другое периферийное оборудование. В роли АКД обычно выступает модем. Конечной целью подключения является соединение двух устройств АПД. Полная схема соединения приведена на рис. 1; интерфейс позволяет исключить канал удаленной связи вместе с парой устройств АКД, соединив устройства непосредственно с помощью нуль-модемного кабеля (рис. 2).

Рис.1. Полная схема соединения по RS-232C


Рис.2. Соединение по RS-232C нуль-модемным кабелем

Стандарт описывает управляющие сигналы интерфейса, пересылку данных, электрический интерфейс и типы разъемов. В стандарте предусмотрены асинхронный и синхронный режимы обмена, но COM-порты поддерживают только асинхронный режим. Функционально RS-232C эквивалентен стандарту МККТТ V.24/ V.28 и стыку С2, но они имеют различные названия сигналов.

Стандарт RS-232C описывает несимметричные передатчики и приемники - сигнал передается относительно общего провода - схемной земли (симметричные дифференциальные сигналы используются в других интерфейсах - например, RS-422). Интерфейс не обеспечивает гальванической развязки устройств. Логической единице (состояние MARK) на входе данных (сигнал RxD) соответствует диапазон напряжения от –12 до –3 В; логическому нулю - от +3 до +12 В (состояние SPACE). Для входов управляющих сигналов состоянию ON (“включено”) соответствует диапазон от +3 до +12 В, состоянию OFF (“выключено”) - от –12 до –3 В. Диапазон от –3 до +3 В - зона нечувствительности, обусловливающая гистерезис приемника: состояние линии будет считаться измененным только после пересечения порога (рис. 3). Уровни сигналов на выходах передатчиков должны быть в диапазонах от –12 до –5 В и от +5 до +12 В. Разность потенциалов между схемными землями (SG) соединяемых устройств должна быть менее 2 В, при более высокой разности потенциалов возможно неверное восприятие сигналов. Заметим, что сигналы уровней ТТЛ (на входах и выходах микросхем UART) передаются в прямом коде для линий TxD и RxD и в инверсном - для всех остальных.

Интерфейс предполагает наличие защитного заземления для соединяемых устройств, если они оба питаются от сети переменного тока и имеют сетевые фильтры.

ВНИМАНИЕ

Подключение и отключение интерфейсных кабелей устройств с автономным питанием должно производиться при отключенном питании. Иначе разность невыровненных потенциалов устройств в момент коммутации может оказаться приложенной выходным или входным (что опаснее) цепям интерфейса и вывести из строя микросхемы.

Стандарт RS-232C регламентирует типы применяемых разъемов.

На аппаратуре АПД (в том числе на COM-портах) принято устанавливать вилки DB-25P или более компактный вариант - DB-9P. Девятиштырьковые разъемы не имеют контактов для дополнительных сигналов, необходимых для синхронного режима (в большинстве 25-штырьковых разъемах эти контакты не используются).

На аппаратуре АКД (модемах) устанавливают розетки DB-25S или DB-9S.

Это правило предполагает, что разъемы АКД могут подключаться к разъемам АПД непосредственно или через переходные “прямые” кабели с розеткой и вилкой, у которых контакты соединены “один в один”. Переходные кабели могут являться и переходниками с 9 на 25-штырьковые разъемы (рис. 4).

Если аппаратура АПД соединяется без модемов, то разъемы устройств (вилки) соединяются между собой нуль-модемным кабелем (Zero-modem, или Z-modem), имеющим на обоих концах розетки, контакты которых соединяются перекрестно по одной из схем, приведенных на рис. 5.


Рис. 3. Прием сигналов RS-232C

Рис. 4. Кабели подключения модемов


Рис. 5. Нуль-модемный кабель: а - минимальный, б - полный

Если на каком-либо устройстве АПД установлена розетка - это почти 100 % того, что к другому устройству оно должно подключаться прямым кабелем, аналогичным кабелю подключения модема. Розетка устанавливается обычно на тех устройствах, у которых удаленное подключение через модем не предусмотрено.

В табл. 1 приведено назначение контактов разъемов COM-портов (и любой другой аппаратуры передачи данных АПД). Контакты разъема DB-25S определены стандартом EIA/TIA-232-E, разъем DB-9S описан стандартом EIA/TIA-574. У модемов (АКД) название цепей и контактов такое же, но роли сигналов (вход-выход) меняются на противоположные.

Таблица 1. Разъемы и сигналы интерфейса RS-232C

Обозначение цепи

Контакт разъема

№ провода кабеля выносного разъема PC

Направление

1 Ленточный кабель 8-битных мультикарт.
2 Ленточный кабель 16-битных мультикарт и портов на системных платах.
3 Вариант ленточного кабеля портов на системных платах.
4 Широкий ленточный кабель к 25-контактному разъему.

Подмножество сигналов RS-232C, относящихся к асинхронному режиму, рассмотрим с точки зрения COM-порта PC. Для удобства будем пользоваться мнемоникой названий, принятой в описаниях COM-портов и большинства устройств (она отличается от безликих обозначений RS-232 и V.24). Напомним, что активному состоянию управляющих сигналов (“включено”) и нулевому значению бита передаваемых данных соответствует положительный потенциал (выше +3 В) сигнала интерфейса, а состоянию “выключено” и единичному биту - отрицательный (ниже –3 В). Назначение сигналов интерфейса приведено в табл. 2. Нормальную последовательность управляющих сигналов для случая подключения модема к COM-порту иллюстрирует рис. 6.

Таблица 2. Назначение сигналов интерфейса RS-232C

Назначение

Protected Ground - защитная земля, соединяется с корпусом устройства и экраном кабеля

Signal Ground - сигнальная (схемная) земля, относительно которой действуют уровни сигналов

Transmit Data - последовательные данные - выход передатчика

Receive Data - последовательные данные - вход приемника

Request To Send - выход запроса передачи данных: состояние “включено” уведомляет модем о наличии у терминала данных для передачи. В полудуплексном режиме используется для управления направлением - состояние “включено” служит сигналом модему на переключение в режим передачи

Clear To Send - вход разрешения терминалу передавать данные. Состояние “выключено” запрещает передачу данных. Сигнал используется для аппаратного управления потоками данных

Data Set Ready - вход сигнала готовности от аппаратуры передачи данных (модем в рабочем режиме подключен к каналу и закончил действия по согласованию с аппаратурой на противоположном конце канала)

Data Terminal Ready - выход сигнала готовности терминала к обмену данными. Состояние “включено” поддерживает коммутируемый канал в состоянии соединения

Data Carrier Detected - вход сигнала обнаружения несущей удаленного модема

Ring Indicator - вход индикатора вызова (звонка). В коммутируемом канале этим сигналом модем сигнализирует о принятии вызова


Рис. 6. Последовательность управляющих сигналов интерфейса

  1. Установкой DTR компьютер указывает на желание использовать модем.
  2. Установкой DSR модем сигнализирует о своей готовности и установлении соединения.
  3. Сигналом RTS компьютер запрашивает разрешение на передачу и заявляет о своей готовности принимать данные от модема.
  4. Сигналом CTS модем уведомляет о своей готовности к приему данных от компьютера и передаче их в линию.
  5. Снятием CTS модем сигнализирует о невозможности дальнейшего приема (например, буфер заполнен) - компьютер должен приостановить передачу данных.
  6. Сигналом CTS модем разрешает компьютеру продолжить передачу (в буфере появилось место).
  7. Снятие RTS может означать как заполнение буфера компьютера (модем должен приостановить передачу данных в компьютер), так и отсутствие данных для передачи в модем. Обычно в этом случае модем прекращает пересылку данных в компьютер.
  8. Модем подтверждает снятие RTS сбросом CTS.
  9. Компьютер повторно устанавливает RTS для возобновления передачи.
  10. Модем подтверждает готовность к этим действиям.
  11. Компьютер указывает на завершение обмена.
  12. Модем отвечает подтверждением.
  13. Компьютер снимает DTR, что обычно является сигналом на разрыв соединения (“повесить трубку”).
  14. Модем сбросом DSR сигнализирует о разрыве соединения.

Из рассмотрения этой последовательности становятся понятными соединения DTR–DSR и RTS–CTS в нуль-модемных кабелях.

Асинхронный режим передачи

Асинхронный режим передачи является байт-ориентированным (символьно-ориентированным): минимальная пересылаемая единица информации - один байт (один символ). Формат посылки байта иллюстрирует рис. 7. Передача каждого байта начинается со старт-бита, сигнализирующего приемнику о начале посылки, за которым следуют биты данных и, возможно, бит четности (Parity). Завершает посылку стоп-бит, гарантирующий паузу между посылками. Старт-бит следующего байта посылается в любой момент после стоп-бита, то есть между передачами возможны паузы произвольной длительности. Старт-бит, имеющий всегда строго определенное значение (логический 0), обеспечивает простой механизм синхронизации приемника по сигналу от передатчика. Подразумевается, что приемник и передатчик работают на одной скорости обмена. Внутренний генератор синхронизации приемника использует счетчик-делитель опорной частоты, обнуляемый в момент приема начала старт-бита. Этот счетчик генерирует внутренние стробы, по которым приемник фиксирует последующие принимаемые биты. В идеале стробы располагаются в середине битовых интервалов, что позволяет принимать данные и при незначительном рассогласовании скоростей приемника и передатчика. Очевидно, что при передаче 8 бит данных, одного контрольного и одного стоп-бита предельно допустимое рассогласование скоростей, при котором данные будут распознаны верно, не может превышать 5 %. С учетом фазовых искажений и дискретности работы внутреннего счетчика синхронизации реально допустимо меньшее отклонение частот. Чем меньше коэффициент деления опорной частоты внутреннего генератора (чем выше частота передачи), тем больше погрешность привязки стробов к середине битового интервала, и требования к согласованности частот становятся более строгие. Чем выше частота передачи, тем больше влияние искажений фронтов на фазу принимаемого сигнала. Взаимодействие этих факторов приводит к повышению требований к согласованности частот приемника и передатчика с ростом частоты обмена.


Рис.7. Формат асинхронной передачи RS-232C

Формат асинхронной посылки позволяет выявлять возможные ошибки передачи.

  • Если принят перепад, сигнализирующий о начале посылки, а по стробу старт-бита зафиксирован уровень логической единицы, старт-бит считается ложным и приемник снова переходит в состояние ожидания. Об этой ошибке приемник может не сообщать.
  • Если во время, отведенное под стоп-бит, обнаружен уровень логического нуля, фиксируется ошибка стоп-бита.
  • Если применяется контроль четности, то после посылки бит данных передается контрольный бит. Этот бит дополняет количество единичных бит данных до четного или нечетного в зависимости от принятого соглашения. Прием байта с неверным значением контрольного бита приводит к фиксации ошибки.
  • Контроль формата позволяет обнаруживать обрыв линии: как правило, при обрыве приемник “видит” логический нуль, который сначала трактуется как старт-бит и нулевые биты данных, но потом срабатывает контроль стоп-бита.

Для асинхронного режима принят ряд стандартных скоростей обмена: 50, 75, 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600 и 115200 бит/с. Иногда вместо единицы измерения “бит/с” используют “бод” (baud), но при рассмотрении двоичных передаваемых сигналов это некорректно. В бодах принято измерять частоту изменения состояния линии, а при недвоичном способе кодирования (широко применяемом в современных модемах) в канале связи скорости передачи бит (бит/с) и изменения сигнала (бод) могут отличаться в несколько раз.

Количество бит данных может составлять 5, 6, 7 или 8 (5- и 6-битные форматы распространены незначительно). Количество стоп-бит может быть 1, 1,5 или 2 (“полтора бита” означает только длительность стопового интервала).

Управление потоком данных

Для управления потоком данных (Flow Control) могут использоваться два варианта протокола - аппаратный и программный. Иногда управление потоком путают с квитированием. Квитирование (handshaking) подразумевает посылку уведомления о получении элемента, в то время как управление потоком предполагает посылку уведомления о возможности или невозможности последующего приема данных. Зачастую управление потоком основано на механизме квитирования.

Аппаратный протокол управления потоком RTS/CTS (hardware flow control) использует сигнал CTS, который позволяет остановить передачу данных, если приемник не готов к их приему (рис. 8). Передатчик “выпускает” очередной байт только при включенной линии CTS. Байт, который уже начал передаваться, задержать сигналом CTS невозможно (это гарантирует целостность посылки). Аппаратный протокол обеспечивает самую быструю реакцию передатчика на состояние приемника. Микросхемы асинхронных приемопередатчиков имеют не менее двух регистров в приемной части - сдвигающий, для приема очередной посылки, и хранящий, из которого считывается принятый байт. Это позволяет реализовать обмен по аппаратному протоколу без потери данных.


Рис.8. Аппаратное управление потоком

Аппаратный протокол удобно использовать при подключении принтеров и плоттеров, если они его поддерживают. При непосредственном (без модемов) соединении двух компьютеров аппаратный протокол требует перекрестного соединения линий RTS - CTS.

При непосредственном соединении у передающего терминала должно быть обеспечено состояние “включено” на линии CTS (соединением собственных линий RTS - CTS), в противном случае передатчик будет “молчать”.

Применяемые в IBM PC приемопередатчики 8250/16450/16550 сигнал CTS аппаратно не отрабатывают, а только показывают его состояние в регистре MSR. Реализация протокола RTS/CTS возлагается на драйвер BIOS Int 14h, и называть его “аппаратным” не совсем корректно. Если же программа, пользующаяся COM-портом, взаимодействует с UART на уровне регистров (а не через BIOS), то обработкой сигнала CTS для поддержки данного протокола она занимается сама. Ряд коммуникационных программ позволяет игнорировать сигнал CTS (если не используется модем), и для них не требуется соединение входа CTS с выходом даже своего сигнала RTS. Однако существуют и иные приемопередатчики (например, 8251), в которых сигнал CTS отрабатывается аппаратно. Для них, а также для “честных” программ, использование сигнала CTS на разъемах (а то и на кабелях) обязательно.

Программный протокол управления потоком XON/XOFF предполагает наличие двунаправленного канала передачи данных. Работает протокол следующим образом: если устройство, принимающее данные, обнаруживает причины, по которым оно не может их дальше принимать, оно по обратному последовательному каналу посылает байт-символ XOFF (13h). Противоположное устройство, приняв этот символ, приостанавливает передачу. Когда принимающее устройство снова становится готовым к приему данных, оно посылает символ XON (11h), приняв который противоположное устройство возобновляет передачу. Время реакции передатчика на изменение состояния приемника по сравнению с аппаратным протоколом увеличивается, по крайней мере, на время передачи символа (XON или XOFF) плюс время реакции программы передатчика на прием символа (рис. 9). Из этого следует, что данные без потерь могут приниматься только приемником, имеющим дополнительный буфер принимаемых данных и сигнализирующим о неготовности заблаговременно (имея в буфере свободное место).


Рис.9. Программное управление потоком XON/XOFF

Преимущество программного протокола заключается в отсутствии необходимости передачи управляющих сигналов интерфейса - минимальный кабель для двустороннего обмена может иметь только 3 провода (см. рис. 5, а). Недостатком, помимо обязательного наличия буфера и большего времени реакции (снижающего общую производительность канала из-за ожидания сигнала XON), является сложность реализации полнодуплексного режима обмена. В этом случае из потока принимаемых данных должны выделяться (и обрабатываться) символы управления потоком, что ограничивает набор передаваемых символов.

Кроме этих двух распространенных стандартных протоколов, поддерживаемых и ПУ, и ОС, существуют и другие.

Описание интерфейса RS-232, формат используемых разъемов и назначение выводов, обозначения сигналов, протокол обмена данными.

Общее описание

Интерфейс RS-232, совсем официально называемый "EIA/TIA-232-E", но более известный как интерфейс "COM-порта", ранее был одним из самых распространенных интерфейсов в компьютерной технике. Он до сих пор встречается в настольных компьютерах, несмотря на появление более скоростных и "интеллектуальных" интерфейсов, таких как USB и FireWare. К его достоинствам с точки зрения радиолюбителей можно отнести невысокую минимальную скорость и простоту реализации протокола в самодельном устройстве.

Физический интерфейс реализуется одним из двух типов разъемов: DB-9M или DB-25M, последний в выпускаемых в настоящее время компьютерах практически не встречается.

Назначение выводов 9-контактного разъема


9-контактная вилка типа DB-9M
Нумерация контактов со стороны штырьков
Направление сигналов указано относительно хоста (компьютера)
Контакт Сигнал Направление Описание
1 CD Вход Обнаружена несущая
2 RXD Вход Принимаемые данные
3 TXD Выход Передаваемые данные
4 DTR Выход Хост готов
5 GND - Общий провод
6 DSR Вход Устройство готово
7 RTS Выход Хост готов к передаче
8 CTS Вход Устройство готово к приему
9 RI Вход Обнаружен вызов

Назначение выводов 25-контактного разъема

Контакт Сигнал Направление Описание
1 SHIELD - Экран
2 TXD Выход Передаваемые данные
3 RXD Вход Принимаемые данные
4 RTS Выход Хост готов к передаче
5 CTS Вход Устройство готово к приему
6 DSR Вход Устройство готово
7 GND - Общий провод
8 CD Вход Обнаружена несущая
9 - - Резерв
10 - - Резерв
11 - - Не используется
12 SCD Вход Обнаружена несущая #2
13 SCTS Вход Устройство готово к приему #2
Контакт Сигнал Направление Описание
14 STXD Выход Передаваемые данные #2
15 TRC Вход Тактирование передатчика
16 SRXD Вход Принимаемые данные #2
17 RCC Вход Тактирование приемника
18 LLOOP Выход Локальная петля
19 SRTS Выход Хост готов к передаче #2
20 DTR Выход Хост готов
21 RLOOP Выход Внешняя петля
22 RI Вход Обнаружен вызов
23 DRD Вход Определена скорость данных
24 TRCO Выход Тактирование внешнего передатчика
25 TEST Вход Тестовый режим

Из таблиц видно, что 25-контактный интерфейс отличается наличием полноценного второго канала приема-передачи (сигналы, обозначенные "#2"), а также многочисленных дополнительных управляющих и контрольных сигналов. Однако, часто, несмотря на наличие в компьютере "широкого" разъема, дополнительные сигналы на нем просто не подключены.

Электрические характеристики

Логические уровни передатчика: "0" - от +5 до +15 Вольт, "1" - от -5 до -15 Вольт.

Логические уровни приемника: "0" - выше +3 Вольт, "1" - ниже -3 Вольт.

входное сопротивление приемника не менее 3 кОм.

Данные характеристики определены стандартом как минимальные, гарантирующие совместимость устройств, однако реальные характеристики обычно существенно лучше, что позволяет, с одной стороны, питать маломощные устройства от порта (например, так спроектированы многочисленные самодельные data-кабели для сотовых телефонов), а с другой - подавать на вход порта инвертированный TTL-уровень вместо двуполярного сигнала.

Описание основных сигналов интерфейса

CD - Устройство устанавливает этот сигнал, когда обнаруживает несущую в принимаемом сигнале. Обычно этот сигнал используется модемами, которые таким образом сообщают хосту о обнаружении работающего модема на другом конце линии.

RXD - Линия приема хостом данных от устройства. Подробно описана в разделе "Протокол обмена данными".

TXD - Линия передачи хостом данных к устройству. Подробно описана в разделе "Протокол обмена данными".

DTR - Хост устанавливает этот сигнал, когда готов к обмену данными. Фактически сигнал устанавливается при открытии порта коммуникационной программой и остается в этом состоянии все время, пока порт открыт.

DSR - Устройство устанавливает этот сигнал, когда включено и готово к обмену данными с хостом. Этот и предыдущий (DTR) сигналы должны быть установлены для обмена данными.

RTS - Хост устанавливает этот сигнал перед тем, как начать передачу данных устройству, а также сигнализирует о готовности к приему данных от устройства. Используется при аппаратном управлении обменом данными.

CTS - Устройство устанавливает этот сигнал в ответ на установку хостом предыдущего (RTS), когда готово принять данные (например, когда предыдущие присланные хостом данные переданы модемом в линию или есть свободное место в промежуточном буфере).

RI - Устройство (обычно модем) устанавливает этот сигнал при получении вызова от удаленной системы, например при приеме телефонного звонка, если модем настроен на прием звонков.

Протокол обмена данными

В протоколе RS-232 существуют два метода управления обменом данных: аппаратный и программный, а также два режима передачи: синхронный и асинхронный. Протокол позволяет использовать любой из методов управления совместно с любым режимом передачи. Также допускается работа без управления потоком, что подразумевает постоянную готовность хоста и устройства к приему данных, когда связь установлена (сигналы DTR и DSR установлены).

Аппаратный метод управления реализуется с помощью сигналов RTS и CTS. Для передачи данных хост (компьютер) устанавливает сигнал RTS и ждет установки устройством сигнала CTS, после чего начинает передачу данных до тех пор, пока сигнал CTS установлен. Сигнал CTS проверяется хостом непосредственно перед началом передачи очередного байта, поэтому байт, который уже начал передаваться, будет передан полностью независимо от значения CTS. В полудуплексном режиме обмена данными (устройство и хост передают данные по очереди, в полнодуплексном режиме они могут делать это одновременно) снятие сигнала RTS хостом означает его переход в режим приема.

Программный метод управления заключается в передаче принимающей стороной специальных символов остановки (символ с кодом 0x13, называемый XOFF) и возобновления (символ с кодом 0x11, называемый XON) передачи. При получении данных символов передающая сторона должна соответственно остановить передачу или возобновить ее (при наличии данных, ожидающих передачи). Этот метод проще с точки зрения реализации аппаратуры, однако обеспечивает более медленную реакцию и соответственно требует заблаговременного извещения передатчика при уменьшении свободного места в приемном буфере до определенного предела.

Синхронный режим передачи подразумевает непрерывный обмен данными, когда биты следуют один за другим без дополнительных пауз с заданной скоростью. Этот режим COM-портом не поддерживается .

Асинхронный режим передачи состоит в том, что каждый байт данных (и бит контроля четности, в случае его наличия) "оборачивается" синхронизирующей последовательностью из одного нулевого старт-бита и одного или нескольких единичных стоп-битов. Схема потока данных в асинхронном режиме представлена на рисунке.

Один из возможных алгоритмов работы приемника следующий:

  1. Ожидать уровня "0" сигнала приема (RXD в случае хоста, TXD в случае устройства).
  2. Отсчитать половину длительности бита и проверить, что уровень сигнала все еще "0"
  3. Отсчитать полную длительность бита и текущий уровень сигнала записать в младший бит данных (бит 0)
  4. Повторить предыдущий пункт для всех остальных битов данных
  5. Отсчитать полную длительность бита и текущий уровень сигнала использовать для проверки правильности приема с помощью контроля четности (см. далее)
  6. Отсчитать полную длительность бита и убедиться, что текущий уровень сигнала "1".

Строго говоря, интерфейс RS 232 - это название стандарта (RS — recommended standard — рекомендованный стандарт, 232 — его номер), описывающего интерфейс для соединения компьютера и устройства передачи данных.

Стандарт был разработан достаточно давно, в 60-х годах 20-го века. В настоящее время действует редакция стандарта, принятая в 1991 году ассоциациями электронной и телекоммуникационной промышленности, под названием EIA/TIA-232-E .

Тем не менее, большинство людей по-прежнему использует название RS-232, которое накрепко приросло к самому интерфейсу.

Устройства

Интерфейс RS-232 обеспечивает соединение двух устройств, одно из которых называется DTE (Data Terminal Equipment) - ООД (Оконечное Оборудование Данных), второе - DCE (Data Communications Equipment) - ОПД (Оборудование Передачи Данных).

Как правило, DTE (ООД) - это компьютер, а DCE (ОПД) - это модем, хотя RS-232 использовался и для подключения к компьютеру периферийных устройств (мышь, принтер), и для соединения с другим компьютером или .

Важно запомнить эти обозначения (DTE и DCE). Они используются в названиях сигналов интерфейса и помогают разобраться с описанием конкретной реализации.

Типы разъемов

Изначально стандарт описывал применение 25-контактного соединителя, типа DB25. DTE-устройство должно оснащаться вилкой (male — «папа»), DCE-устройство - розеткой (female — «мама»). Позднее, с появлением IBM PC, стали использовать усеченный вариант интерфейса и 9-контактные соединители DB9, наиболее распространенные в настоящее время.

Распайка RS-232

В приведенной ниже таблице показано назначение контактов 9-контактного соединителя DB9. Таблица показывает распайку вилки оборудования обработки данных (DTE) , например, ПЭВМ. Розетка устройства передачи данных (DCE) распаяна так, что два разъема стыкуются напрямую, или через кабель, распаянный «контакт в контакт».

1 - Carrier Detect (CD) Наличие несущей частоты

2 - Received Data (RD) Принимаемые данные

3 - Transmitted Data (TD) Передаваемые данные

4 - Data Terminal Ready (DTR) Готовность ООД

5 - Signal Ground Общий

6 - Data Set Ready (DSR) Готовность ОПД

7 - Request To Send (RTS) Запрос на передачу

8 - Clear To Send (CTS) Готов передавать

9 - Ring Indicator (RI) Наличие сигнала вызова

Для передачи данных предназначены цепи RD и TD. Остальные цепи предназначены для индикации состояния устройств (DTR, DSR), управления передачей (RTS, CTS) и индикации состояния линии (CD, RI). Полный набор цепей используется только для подключения к ПЭВМ внешнего модема. В остальных случаях, например при подключении к ПЭВМ промышленного контроллера, используется ограниченный набор цепей, зависящий от аппаратной и программной реализации стыка в контроллере.

Схема кабеля RS-232

Как было сказано выше, для соединения строго соответствующих стандарту устройств DTE и DCE нужен кабель «контакт в контакт». Для соединения двух DTE-устройств используют так называемые нуль-модемные кабели, в которых провода «перекрещиваются» в соответствии с назначением сигналов. На практике перед распайкой кабеля всегда следует разобраться с документацией на оба соединяемых устройства.

Стартовый бит всегда идет уровнем логического нуля, стоповый - единицей. Состояние бита паритета определяется настройкой передатчика. Бит дополняет число единичных битов данных до нечетности (parity odd), четности (parity even), может не использоваться (parity none), быть всегда единицей (mark) или нулем (space).

Перспективы

На самом деле перспектив у RS-232 нет. В настоящее время появляется всё больше компьютеров, не оснащенных этим интерфейсом. Однако в эксплуатации находится большое число устройств с интерфейсом RS-232. Для стыковки ПЭВМ с такими устройствами используют переходники USB — RS-232.

После подключения такого переходника и установки драйверов в ПЭВМ появляется виртуальный COM-порт, через который можно общаться с устройством.

Про RS-232 (распайка кабелей, разъемов, краткое описание)

Контакты RS-232C

Распайка "модемного" кабеля интерфейса RS-232C

Обмен данными и интерфейс RS-232

Устранение неполадок при связи через RS-232

Контакты RS-232C

Контакты разъема DB-9 интерфейса RS-232C

Распайка "модемного" кабеля интерфейса RS-232C

Распайка "нуль-модемного" кабеля интерфейса RS-232C

Распайка кабеля RS-232C для коммутаторов Kramer

Обмен данными и интерфейс RS-232

При работе в потенциально зашумлённых условиях нам нужны надёжные средства для передачи данных. Самым распространённым стандартом всё ещё остаётся архаичный RS-232C (Recommended Standard 232 Version С), принятый ассоциацией электронной промышленности EIA (Electronic Industries Association) в августе 1969 г.
Достоинства RS-232:
Популярность - все компьютеры РС (но не Mac) оборудованы по крайней мере одним портом RS-232
Лёгкость приобретения готовых кабелей
Возможность применения аппаратного управления процессом передачи (зачастую не используется!)
Недостатки RS-232:
Связь типа «точка-точка» (DTE? DCE)
Низкая, по современным меркам, скорость (обычно 9600 бод [бит в секунду])
Работает только на небольших расстояниях (до 10 м)
Состав линий связи между устройствами DTE и DCE точно не определён. Стандарт описывает функции до 25 соединительных линий, но не указывает, должна или не должна использоваться та или иная линия. Лучше (технологически) обстоят дела в стандарте RS-422. По этому стандарту связь осуществляется по двум парам проводов, а передаваемый сигнал может приниматься более чем одним устройством. Согласно стандарту RS-485 (улучшенный RS-422) используется одна пара проводов, которая используется для передачи или приёма многими устройствами.
Характеристики и преимущества RS-422 / RS-485:
Может использоваться для многоточечных соединений
Является стандартном де-факто для значительной части вещательной видео индустрии!
Может использоваться на расстояниях до 1,2 км
Высокая помехоустойчивость за счёт использования дифференциальных (балансных) линий связи
Удлинитель линии связи KRAMER VP-43 Range Extender:
Предназначен для преодоления ограничений по расстоянию для наших продуктов, имеющих управление через RS-232.
Осуществляет преобразование в интерфейс RS-422, а затем назад, в RS-232, что позволяет использовать в качестве физического носителя две пары проводов.
Может быть использован для увеличения расстояния связи для любого нуль-модемного соединения RS-232.
Также может быть использован для управления нашими изделиями через RS-422, либо к качестве преобразователя общего назначения из RS-232 в RS-422 и обратно.
Расширитель портов KRAMER VP-14 Port Extender:
Предназначен для преодоления ограничения интерфейса RS-232, который может осуществлять только соединения типа «точка-точка». Позволяет осуществлять связь между несколькими устройствами с интерфейсами RS-232.
Данные, которые поступают на любой из портов устройства, пересылаются на остальные 3 порта.
Может быть использован для управления коммутатором от 3 устройств DTE (например, компьютеров).
Работает во всех режимах связи (число битов, скорость, чётность и т. д.) и не требует настройки этих параметров.

Устранение неполадок при связи через RS-232

Ниже приведены меры, которые могут помочь разрешить проблемы, возникающие при связи с устройствами Kramer через интерфейс RS-232.
1. Убедитесь, что между устройством (коммутатором, маршрутизатором) и управляющим компьютером (РС) установлено нуль-модемное соединение.
Проще всего (при использовании 25-контактного порта на РС) использовать нуль-модемный адаптер, прилагаемый к устройству. Подключите такой переходник 25-контактным разъёмом к последовательному порту РС, после чего прямым кабелем - т. е. с распайкой один к одному - соедините 9-контактный разъём адаптера с последовательным портом на устройстве. (Если адаптер используется с неполным кабелем, то необходимо, как минимум, соединить на 9-контактных разъёмах с обоих концов: контакт 2 с контактом 2, 3 - с 3 и 5 - с 5.)
При непосредственном подключении 25-контактного порта на РС к 9-контактному разъёму на устройстве (т. е. без нуль-модемного адаптера) соедините следующее:
Контакт 2 на 25-контактном разъёме - с контактом 2 на 9-контактном
Контакт 3 на 25-контактном разъёме - с контактом 3 на 9-контактном
Контакт 7 на 25-контактном разъёме - с контактом 5 на 9-контактном
Закоротите вместе контакты 6 и 20 на 25-контактном разъёме
Закоротите вместе контакты 4, 5 и 8 на 25-контактном разъёме
При непосредственном подключении 9-контактного порта на РС к 9-контактному разъёму на устройстве соедините следующее:
Контакт 2 на разъёме РС - с контактом 3 на разъёме устройства
Контакт 3 на разъёме РС - с контактом 2 на разъёме устройства
Контакт 5 на разъёме РС - с контактом 5 на разъёме устройства
Закоротите вместе контакты 4 и 6 на разъёме РС
Закоротите вместе контакты 1, 7 и 8 на разъёме РС
2. Убедитесь, что на устройстве правильно выставлены все DIP-переключатели.
3. Убедитесь, что установки для скорости передачи данных на РС и на устройстве совпадают, а на РС выбран правильный com-порт.
4. Если несколько устройств используются одновременно, убедитесь, что все они включены. Если в системе, работающей по схеме «ведущий/ведомый» (master/slave), какое-либо из устройств выключено, обмен в такой системе не будет надёжным.
5. Если в устройстве имеется функция «DISABLE TXD» (Отключить TXD), убедитесь, что эта функция выключена; аналогично, если для «отключения ответа» используется DIP-переключатель, убедитесь, что ответ разрешён.
6. Контакт 3 на разъёме RS-232 устройства используется для отправки данных в РС (это TXD устройства и RXD на РС). Контакт 2 на разъёме устройства используется для приёма данных от РС (это RXD устройства и TXD на РС). Может оказаться полезным с помощью цифрового запоминающего осциллографа убедиться в том, что устройство передаёт/принимает данные на указанных контактах.
7. В большинстве устройств используется «двунаправленный» протокол обмена. Это значит, что один и тот же код используется как для передачи в устройство команды на выполнение определённого действия, так и в качестве ответа от устройства (в РС) при нажатии кнопки на его передней панели для выполнения аналогичного действия. Например, если пользователь нажал кнопки и скоммутировал вход 4 на выход 5, устройство посылает в компьютер шестнадцатеричный код 7В; в то же время при получении устройством кода 7В оно также отработает подключение входа 4 на выход 5. Для такого протокола может оказаться полезным анализировать коды, посылаемые устройством при нажатии кнопок на его передней панели с тем, чтобы разобраться в протоколе обмена.
8. При устранении неполадок может оказаться полезным применять коммуникационную программу вроде Procomm или Viewcom чтобы вначале проанализировать коды, посылаемые устройством. Затем можно попробовать посылать такие коды назад (см. пункт 7), проверяя, что устройство правильно на них реагирует. Наконец, можно послать код, по которому устройство вернёт своё состояние.
9. Если должна использоваться написанная пользователем программа, по возможности вначале с помощью фирменной программы убедитесь в том, что связь между РС и устройством работает нормально.
10. Для оборудования, в котором управление через RS-232 предусмотрено в качестве опции и вводится установкой дополнительной аппаратной платы, проверьте, что такая плата правильно установлена (как описано в руководстве). В частности, для серии коммутаторов Х02 проверьте прямой кабель, подключаемый к модулю, и убедитесь, что на разъёмах нет замятых контактов.
11. Некоторые устройства могут получать управление от других элементов оборудования и могут настраиваться на работу через RS-232 с таким оборудованием, а не с компьютером. В этом случае необходимо правильно настроить устройство. Например, модели BC-2216 и BC-2616 (матричные коммутаторы звуковых сигналов 16X16) настраиваются на заводе (по умолчанию) на работу с BC-2516 (матричным коммутатором видео 16X16). В этом случае звуковая матрица получает управление от РС через видеоматрицу. Если звуковой матрицей надо управлять независимо, её следует соответственно перенастроить (на работу в режиме устройства, переключающего «только звук»).
12. Если необходимо выслать несколько команд, то перед отправкой дополнительной команды следует убедиться в том, что устройство отработало предыдущую команду. Для этого дождитесь получения ответа на предыдущую команду перед отправкой следующей.
13. Убедитесь в том, что для связи с устройством используется настоящий интерфейс RS-232! Некоторое оборудование (например, стандартный последовательный порт Macintosh), хотя и аналогичен RS-232, использует иные режимы обмена данными.
14. При использовании РС с операционной системой Windows NT4.0 (и ниже) следует принять дополнительные меры. Эта система не имеет функции «plug and play» и поэтому настройка портов компьютера в ней - непростая задача. Обратитесь к документации на Windows NT! Даже если Ваша программа работает на компьютере с иной операционной системой, возможно, что под Windows NT порт не будет правильно инициализироваться.
15. Учтите, что рабочее расстояние для RS-232 (по определению) не превышает 10 метров! Если требуется большая длина связи, следует использовать наш «удлинитель линии связи» VP-43.
16. По определению, интерфейс RS-232 предназначен для осуществления обмена между 2 портами (в нашем случае это РС и коммутатор). Если надо соединить вместе несколько устройств с интерфейсами RS-232, можно использовать VP-14 (например, если коммутатором надо управлять от 2-х компьютеров и контроллера BC-2000).
(ПРИМЕЧАНИЕ: Для некоторых изделий из нашей линейки допускается управление несколькими такими устройствами при их последовательном соединении прямыми кабелями - что кажется неправильным в свете вышесказанного! На самом деле мы настраиваем устройства в режимы «ведущий/ведомый» (master/slave), при этом с компьютером через RS-232 связано только одно, ведущее устройство. При таком включении ведущее устройство передаёт информацию на и от РС к ведомым устройствам, а интерфейсом RS-232 порты оказываются связанными попарно.)

Строго говоря, кабель RS-232 - это наименование стандарта, описывающего интерфейс соединения с компьютера с устройством RS - recommended standard, переводится как "рекомендованный стандарт", а 232 - номер типа. Он был разработан еще в 60-х годах прошлого века. Сегодня новая редакция этого стандарта, которую приняли в 1991 году ассоциации телекоммуникационной и носит название EIA/TIA-232-E. Однако большинство людей продолжают использовать название "кабель RS-232", которое намертво "приросло" к интерфейсу.

Указанный выше интерфейс обеспечивает соединение следующих устройств: DTE (Data Terminal Equipment) — ООД (Оконечное Оборудование Данных), и DCE (Data Communications Equipment) — ОПД (Оборудование Передачи Данных). Под ООД обычно подразумевается персональный компьютер, а под ОПД - модем. Хотя кабель RS-232 используется также для подключения к ПЕОМ других периферийных устройств (принтер, мышь и т. д.), а также для соединения с другими компьютерами или контроллерами. Важно помнить обозначения DCE и DTE, так как они используются в наименованиях сигналов интерфейсов и помогают разбираться с описанием требуемой реализации устройства.

Изначально кабель RS-232 имел 25-контактный соединитель типа DB25. Устройство типа DTE оснащалось разъемом-розеткой («мама»). Позднее стали использовать «урезанный» вариант интерфейса с 9-контактными соединителями DB9. Такой вид кабеля распространен и в наши дни.

Распайка кабеля RS-232

Ниже приводится назначение выводов 9-контактнго соединителя типа DB9. Перечень показывает распайку разъема («папа») оборудования обработки данных, например персонального компьютера. Розетка прибора передачи данных распаивается таким образом, что оба разъема стыкуются через кабель или напрямую «контакт в контакт».

1. Carrier Detect - наличие несущей частоты.

2. Received Data - принимаемые данные.

3. Transmitted Data - передаваемые данные.

4. Data Terminal Ready - готовность ООД.

5. Signal Ground - общий.

6. Data Set Read - готовность ОПД.

7. Request To Send - запрос на передачу.

8. ClearToSend - готов передавать.

9. Ring Indicator - наличие сигнала вызова.

Данные передаются по цепям RD и TD. Остальные цепи предназначаются для отображения состояния DTR и DSR устройств, управления передачей CTS и RTS, а также индикации состояния RI и CD линий. Только при подключении к персональному компьютеру внешнего модема используется полный набор цепей. При подключении других таких как контроллеры или мыши, используются выборочные цепи, необходимые для конкретного оборудования. Они зависят от программной и аппаратной реализации устройства.

Описание и технические параметры

Стандарт четко определяет максимально возможную длину кабеля RS-232 - 15 метров со скоростью передачи данных 9600 бит/с. Однако на практике проверено, что устойчивая работа достигается и при большей длине провода. Считается, что при применении неэкранированного кабеля можно увеличить длину до 30 метров, а при использовании экранированного - до 75 метров. И это без потери Если же понизить скорость примерно вдвое, то длина кабеля увеличивается также вдвое. Рекомендуется использовать кабель на основе в таком случае каждый сигнальный провод состоит в паре с общим проводом. Не рекомендуется объединять экран кабеля с общим сигнальным.

Часто можно встретить кабель RS-232- USB. Он представляет собой стандартный интерфейс, на одном из концов которого используется

 

 

Это интересно: