→ Протокол IPv4. SNMP протокол (основы) Протокол ip сети используется на

Протокол IPv4. SNMP протокол (основы) Протокол ip сети используется на

Доброго времени суток, дорогие читатели.
По многочисленным просьбам сегодня я публикую для Вас статью, которая познакомит Вас с основами основ терминов компьютерной сети, а именно:

  • Сетевые протоколы - что это за страшные названия и с чем их едят
  • UDP, TCP, ICMP , - что, зачем и в чем разница
  • IP -адрес, - у всех есть, но не все знают нафига эта штука:-)
  • Маска адреса (подсеть)
  • Шлюз (gateway)
  • Несколько слов о таблицах маршрутизации
  • Порты, - что это на самом деле
  • MAC -адрес

Примерно так.

Статья, думаю, будет полезна всем от мала до велика, ибо содержит не столько набор странных непонятных действий или слов, сколько блок доступным языком изложенной информации, которая, как минимум, даст Вам понимание как вообще это всё работает и зачем это нужно. Поехали.

Сетевые протоколы TCP/IP, NWLink IPX/SPX, NetBEUI

Давайте начнем с того, что вообще такое сетевой протокол и с чем его едят.
Сетевой протокол - это набор программно реализованных правил общения между компьютерами. Этакий язык, на котором компьютеры разговаривают друг с другом и передают информацию. Ранее компьютеры были, так сказать, многоязычны и в старых версиях Windows использовался целый набор протоколов, - TCP/IP, NWLink IPX/SPX, NetBEUI . Ныне же пришли к общей договоренности, и стандартом стало использование исключительно протокола TCP/IP , а посему речь далее пойдет именно о нем.

Когда говорят о TCP/IP , то обычно подразумевают под этим именем множество различных.. правил или, скажем, стандартов, которые прописаны с использованием (или под использование) этого протокола. Так, например, есть правила, по которым осуществляется обмен сообщениями между почтовыми серверами и есть правила, по которым конечный пользователь получает в свой ящик письма. Имеются правила для проведения видео-конференций и правила для организации "телефонных" переговоров по Интернету. Фактически, это даже не то чтобы правила.. Скорее этакая грамматика, что ли. Ну знаете, в английском одна структура построения диалогов, в французском другая.. Вот и в TCP/IP нечто подобное, т.е. некая связка различных грамматических правил представляет собой как раз цельный протокол TCP/IP или, точнее говоря, стек протоколов TCP/IP .

Сетевые протоколы UDP, TCP, ICMP

В рамках протокола TCP/IP для передачи данных используются протоколы - TCP и UDP . Многие наверняка слышали, что есть порты как TCP , так и UDP , но не все знают в чем разница и что это вообще. И так..

Передача данных по протоколу TCP (Transmission Control Protocol - Протокол Управления Передачей) предусматривает наличие подтверждений получения информации. "-Ну, мол, - получил? -Получил!" Если же передающая сторона не получит в установленные сроки необходимого подтверждения, то данные будут переданы повторно. Поэтому протокол TCP относят к протоколам, предусматривающим соединение, а UDP (User Datagram Protocol - Протокол Пользовательских Датаграмм) - нет. UDP применяется в тех случаях, когда не требуется подтверждения приема (например, DNS-запросы или IP-телефония (яркий представитель которой, - Skype)). То есть разница заключается в наличии подтверждения приема. Казалось бы "Всего то!", но на практике это играет важную роль.

Есть еще так же протокол ICMP (Internet Control Message Protocol - межсетевой протокол управляющих сообщений), который используется для передачи данных о параметрах сети. Он включает в себя служебные типы пакетов, таки как ping, distination unreachable, TTL и пр.

Что такое IP-адрес

У всех он есть, но не все имеют представление что за адрес такой и почему вообще без него нельзя. Рассказываю.

IP -адрес - 32 -х битное число, используемое для идентификации компьютера в сети. Адрес принято записывать десятичными значениями каждого октета этого числа с разделением полученных значений точками. Например, 192.168.101.36

IP- адреса уникальны, - это значит, что каждый компьютер имеет свое собственное сочетание цифр, и в сети не может быть двух компьютеров с одинаковыми адресами. IP -адреса распределяются централизованно, интернет-провайдеры делают заявки в национальные центры в соответствии со своими потребностями. Полученные провайдерами диапазоны адресов распределяются дальше между клиентами. Клиенты, в свою очередь, сами могут выступать в роли провайдера и распределять полученные IP -адреса между субклиентами и т.д. При таком способе распределения IP -адресов компьютерная система точно знает "расположение" компьютера, имеющего уникальный IP -адрес; - ей достаточно переслать данные в сеть "владельца", а провайдер в свою очередь проанализирует пункт назначения и, зная, кому отдана эта часть адресов, отправит информацию следующему владельцу поддиапазона IP -адресов, пока данные не поступят на компьютер назначения.

Для построения же локальных сетей выделены спец.диапазоны адресов. Это адреса 10.x.x.x , 192.168.x.x , 10.x.x.x , c 172.16.x.x по 172.31.x.x , 169.254.x.x , где под x - имеется ввиду любое число это от 0 до 254 . Пакеты, передаваемые с указанных адресов, не маршрутизируется, иными словами, попросту не пересылаются через Интернет, а поэтому в различных локальных сетях компьютеры могут иметь совпадающие адреса из указанных диапазонов. Т.е., в компании ООО "Рога и копыта " и ООО "Вася и компания " могут находится два компьютера с адресами 192.168.0.244 , но не могут, скажем, с адресами 85.144.213.122 , полученными от провайдера интернета, т.к. в интернете не может быть два одинаковых IP -адреса. Для пересылки информации с таких компьютеров в Интернет и обратно используются спец.программы и устройства, которые заменяют локальные адреса реальными при работе с интернетом. Иными словами, данные в Сеть пересылаются с реального IP -адреса, а не с локального. Этот процесс происходит не заметно для пользователя и называется трансляцией адресов. Хочется так же упомянуть, что в рамках одной сети, скажем, компании, ООО "Рога и копыта ", не может быть два компьютера с одним локальным IP-адресом, т.е., в указанном выше примере имелось ввиду, что один компьютер с адресом 192.168.0.244 в одной компании, второй с таким же адресом - в другой. В одной же компании два компьютера с адресом 192.168.0.244 попросту не уживутся.

Вы наверняка слышали такие термины как внешний IP и внутренний IP , постоянный (статический IP) и переменный (динамический) IP . В двух словах о них:

  • внешний IP - это как раз тот самый IP , который выдает Вам провайдер, т.е. Ваш уникальный адрес в интернете, например, - 85.144.24.122
  • внутренний IP , - это локальный IP , т.е. Ваш IP в локальной сети, например, - 192.168.1.3
  • статический IP - это IP , который не меняется с каждым подключением, т.е. закреплен за Вами твердо и навсегда
  • динамический IP , - это плавающий IP -адрес, который меняется с каждым подключением

Тип Вашего IP (статический или динамический) зависит от настроек провайдера.

Что такое маска адреса (подсеть)

Понятие подсети введено, чтобы можно было выделить часть IP -адресов одной организации, часть другой и тд. Подсеть представляет собой диапазон IP-адресов, которые считаются принадлежащими одной локальной сети. При работе в локальной сети информация пересылается непосредственно получателю. Если данные предназначены компьютеры с IP-адресом, не принадлежащим локальной сети, то к ним применяются специальные правила для вычисления маршрута для пересылки из одной сети в другую.

Маска - это параметр, который сообщает программному обеспечению о том, сколько компьютеров объединено в данную группу (подсеть). Маска адреса имеет такую же структуру как и сам IP-адрес: это набор из четырех групп чисел, каждое из которых может быть в диапазоне от 0 до 255 . При этом, чем меньше значение маски, тем больше компьютеров объединено в данную подсеть. Для сетей небольших компаний маска обычно имеет вид 255.255.255.x (например, 255.255.255.224). Маска сети присваивается компьютеру одновременно с IP-адресом. Так, например, сеть 192.168.0.0 с маской 255.255.255.0 может содержать в себе компьютеры с адресами от 192.168.0.1 до 192.168.254 192.168.0.0 с маской 255.255.255.128 допускает адреса от 192.168.0.1 до 192.168.0.127 . Думаю, смысл понятен. Как правило сети с небольшим возможным числом компьютеров используются провайдерами с целью экономии IP-адресов. Например, клиенту, может быть назначен адрес с маской 255.255.255.252 . Такая подсеть содержит в себе только два компьютера.

После того как компьютер получил IP-адрес и ему стало известно значение маски подсети, программа может начать работу в данной локальной подсети. Однако же, чтобы обмениваться информацией с другими компьютерами в глобальной сети, необходимо знать правила, куда пересылать информацию для внешней сети. Для этого служит такая характеристика как адрес шлюза (Gateway).

Что такое Шлюз (Gateway)

Шлюз - это устройство (компьютер или маршрутизатор), которое обеспечивает пересылку информации между различными IP-подсетями. Если программа определяет (по IP и маске), что адрес назначения не входит в состав локальной подсети, то она отправляет эти данные на устройство, выполняющее функции шлюза. В настройках протокола указывают IP-адрес такого устройства.

Для работы только в локальной сети шлюз может не указываться.

Для индивидуальных пользователей, подключающихся к Интернету, или для небольших предприятий, имеющих единственный канал подключения, в системе должен быть только один адрес шлюза, - это адрес того устройства, которое имеет подключение к Интернету. При наличии нескольких маршрутов будет существовать несколько шлюзов. В этом случае для определения пути передачи данных используется таблица маршрутизации.

Что такое таблицы маршрутизации

И вот мы плавно добрались и до них. И так.. Что же за таблицы такие.

Организация или пользователь может иметь несколько точек подключения к Интернету (например, резервные каналы на случай, если у первого провайдера что-то выйдет из строя, а интернет таки очень нужен) или содержать в своей структуре несколько IP -сетей. В этом случае, чтобы система знала каким путем (через какой шлюз) посылать ту или иную информацию, используются таблицы маршрутизации. В таблицах маршрутизации для каждого шлюза указываются те подсети Интернета, для которых через них должна передаваться информация. При этом для нескольких шлюзов можно задать одинаковые диапазоны, но с разной стоимостью передачи данных: например, информация, будет пересылаться по каналу, имеющему самую низкую стоимость, а в случае выхода его из строя по тем или иным причинам, автоматически будет использоваться следующее доступное наиболее дешевое соединение.

Что такое сетевые порты

При передаче данных кроме IP -адресов отправителя и получателя пакет информации содержит в себе номера портов. Пример: 192.168.1.1:80 , - в данном случае 80 - это номер порта. Порт - это некое число, которое используется при приеме и передаче данных для идентификации процесса (программы), который должен обработать данные. Так, если пакет послан на 80 -й порт, то это свидетельствует, что информация предназначена серверу HTTP .

Номера портов с 1 -го до 1023 -й закреплены за конкретными программами (так называемые well-known-порты). Порты с номерами 1024 -65 535 могут быть использованы в программах собственной разработки. При этом возможные конфликты должны решаться самими программами путем выбора свободного порта. Иными словами, порты будут распределяться динамически: возможно, что при следующем старте программа выберет иное значение порта, если, конечно, Вы вручную через настройки не задавали ей порт.

Что есть MAC-адрес

Дело в том, что пересылаемые пакеты в сети адресуются компьютерам не по их именам и не на IP -адрес. Пакет предназначается устройству с конкретным адресом, который и называется MAC -адресом.

MAC-адрес - это уникальный адрес сетевого устройства, который заложен в него изготовителем оборудования, т.е. это этакий проштампованный номер Вашей сетевой карты. Первая половина MAC -адрес представляет собой идентификатор изготовителя, вторая - уникальный номер данного устройства.

Как правило MAC -адрес бывает требуется для идентификации, скажем, у провайдера (если провайдер использует привязку по мак-адресу вместо логина-пароля) или при настройке маршрутизатора.

Где посмотреть все сетевые настройки

Чуть не забыл сказать пару слов о том где можно поглядеть и поменять всё это.

После девяти месяцев разработки доступен мультимедиа-пакет FFmpeg 4.2, включающий набор приложений и коллекцию библиотек для операций над различными мультимедиа-форматами (запись, преобразование и […]

Linux Mint 19.2 является выпуском с долгосрочной поддержкой, который будет поддерживаться до 2023 года. Он поставляется с обновленным программным обеспечением и содержит доработки и множество новых […]

  • Вышел дистрибутив Linux Mint 19.2

    Представлен релиз дистрибутива Linux Mint 19.2, второго обновления ветки Linux Mint 19.x, формируемой на пакетной базе Ubuntu 18.04 LTS и поддерживаемой до 2023 года. Дистрибутив полностью совместим […]

  • Доступны новые сервисные релизы BIND, которые содержат исправления ошибок и улучшения функций. Новые выпуски могут быть скачано со страницы загрузок на сайте разработчика: […]

    Exim – агент передачи сообщений (MTA), разработанный в Кембриджском университете для использования в системах Unix, подключенных к Интернету. Он находится в свободном доступе в соответствии с […]

    После почти двух лет разработки представлен релиз ZFS on Linux 0.8.0, реализации файловой системы ZFS, оформленной в виде модуля для ядра Linux. Работа модуля проверена с ядрами Linux c 2.6.32 по […]

  • В WordPress 5.1.1 устранена уязвимость, позволяющая получить контроль над сайтом
  • Комитет IETF (Internet Engineering Task Force), занимающийся развитием протоколов и архитектуры интернета, завершил формирование RFC для протокола ACME (Automatic Certificate Management Environment) […]

    Некоммерческий удостоверяющий центр Let’s Encrypt, контролируемый сообществом и предоставляющий сертификаты безвозмездно всем желающим, подвёл итоги прошедшего года и рассказал о планах на 2019 год. […]

  • Вышла новая версия Libreoffice – Libreoffice 6.2

    The Document Foundation объявил о выпуске LibreOffice 6.2. Изменения и дополнения в новом выпуске: Libreoffice Writer Переделана возможность скрытия изменений: изменить ▸ трек изменений ▸ показать […]

  • Сетевой протокол IP является базовым строительным элементом всей сети Интернет, построенной на базе стека протоколов TCP/IP. Он обеспечивает работу базовой службы доставки пакетов, все протоколы сетевого и соседних уровней используют протокол IP для доставки данных.

    Протокол IP выполняет ряд важных функций:

    1. Определяет базовую единицу передачи информации в сети Интернет – дейтограмму;
    2. Определяет схему интернет-адресации (IP-адрес);
    3. Осуществляет обмен данными между уровнем доступа к сети и транспортным уровнем;
    4. Выполняет маршрутизацию пакетов, адресованных удаленным узлам;
    5. Отвечает за разбиение и сборку дейтаграмм.

    Особенностью протокола IP является то, что он не проверяет были ли данные успешно доставлены. Иными словами, данный протокол работает без создания логических соединений . Установка логических соединений делегируется протоколам других уровней (например, протокол TCP). Помимо этого, при обнаружении и исправлении ошибок протокол IP также полагается на другие протоколы.

    Формат пакета, определяемый протоколом IP называется дейтаграммой.

    Как видно дейтаграмма содержит множество различных полей, но нам интересны, в первую очередь, IP-адрес отправителя и IP-адрес получателя. Данные поля занимают по 4 байта каждый. По сути это число от 0.0.0.0 до 255.255.255.255, которое определяет адрес узла в сети Интернет. Доставка пакетов осуществляется на основе Ip-адреса получателя. Если адреса отправителя и получателя находятся в одной подсети, то пакет доставляется напрямую в пункт назначения. В противном случае, пакет будет сначала доставлен на шлюз по-умолчанию (маршрутизатор в локальной сети). Шлюз занимается коммутацией пакетов между физически обособленными сетями.

    Другое полезное поле – идентификатор протокола. Данное поле занимает всего 1 байт и указывает какому протоколу верхнего уровня принадлежит пакет (например: TCP, UDP, RIP и др.). Иными словами, поле “протокол” указывает на то, какой тип данных передается поверх “IP”.

    Время жизни пакета (TTL) – число переходов (хопов), за который пакет может существовать до своего исчезновения. Хоп – это участок между маршрутизаторами. Наличие этого параметра не позволяет пакету бесконечно путешествовать по сети. Поле TTL занимает 2 байта, соответственно максимальное значение TTL = 255.

    Контрольная сумма заголовка – защищает от искажений, которые могут возникнуть в течении передачи пакета. Контрольная сумма вычисляется в передатчике, и полученное значение посылается с пакетом. Приемник повторяет те же самые вычисления всего пакета, включая контрольную сумму. Если результат вычисления удовлетворителен, то пакет принимается; в противном случае он отклоняется. Стоит отметить, что так как заголовки IP-пакета могут меняться (тот же самый TTL), то контрольная сумма рассчитывается при каждой обработке IP-пакета.

    Поля “идентификатор”, “флаги”, “указатель фрагмента” относятся к такому понятию как фрагментация. IP-фрагментация – это разбиение датаграммы на множество частей, которые могут быть повторно собраны позже. При использовании пакетного форматирования сеть может передавать длинные сообщения более надежно и эффективно.

    Поле идентификатор занимает 2 байта и используется для распознавания пакетов, образовавшихся путем фрагментации исходного пакета. Все фрагменты должны иметь одинаковое значение этого поля.

    Поле флаги занимает 3 бита и содержит признаки, связанные с фрагментацией. Установленный бит DF (Do not Fragment) запрещает маршрутизатору фрагментировать данный пакет, а установленный бит MF (More Fragment) говорит о том, что данный пакет является промежуточным (не последним фрагментом).

    Поле указатель фрагмента занимает 13 бит и задает смещение в байтах поля данных этого пакет от начала общего поля данных исходного пакета, подвергнутого фрагментации.

    Поле тип сервиса (ToS) – байт, содержащий набор критериев, определяющих тип обслуживания IP-пакетов. Тип обслуживания позволяет приоритезировать IP-трафик на сетевых маршрутизаторах, с целью обеспечения высокого качества передачи данных.

    Байт побитно (0 – старший, 7 – младший):

    • 0-2 – приоритет (predence) данного IP-пакета
    • 3 – требования ко времени задержки (delay) передачи IP-пакета (0 – нормальная, 1 – низкая задержка)
    • 4 – требования к пропускной способности (throughput) маршрута, по которому должен отправляться IP-сегмент (0 – низкая, 1 – высокая пропускная способность)
    • 5 – требования к надежности (reliability) передачи IP-пакета (0 – нормальная, 1 – высокая надежность)
    • 6-7 – явное сообщение о задержке

    Мы оказываем услуги по ремонту и настройке компьютеров, смартфонов, планшетов, wi-fi роутеров, модемов, IP-TV, принтеров. Качественно и недорого. Возникла проблема? Заполните форму ниже и мы Вам перезвоним.

    В этой статье будут рассказаны основы модели TCP/IP. Для лучшего понимания описаны основные протоколы и службы. Главное - не торопиться и стараться понимать каждую вещь поэтапно. Все они взаимосвязаны и без понимания одной, трудно будет понять другую. Здесь скомпонована весьма поверхностная информация, так что эту статью смело можно назвать «стеком протоколов TCP/IP для чайников». Однако, многие вещи здесь не так трудны для понимания, как может показаться на первый взгляд.

    TCP/IP

    Стек TCP/IP - сетевая модель передачи данных в сети, она определяет порядок взаимодействия устройств. Данные поступают на канальный уровень и обрабатываются поочередно каждым уровнем выше. Стек представлен в виде абстракции, которая объясняет принципы обработки и приема данных.

    Стек протоколов сети TCP/IP имеет 4 уровня:

    1. Канальный (Link).
    2. Сетевой (Internet).
    3. Транспортный (Transport).
    4. Прикладной (Application).

    Прикладной уровень

    Прикладной уровень обеспечивает возможность взаимодействия между приложением и другими уровнями стека протоколов, анализирует и преобразовывает поступающую информацию в формат, подходящий для программного обеспечения. Является ближайшим к пользователю и взаимодействует с ним напрямую.

    • HTTP;
    • SMTP;

    Каждый протокол определяет собственный порядок и принципы работы с данными.

    HTTP (HyperText Transfer Protocol) предназначен для передачи данных. По нему отправляются, например, документы в формате HTML, которые служат основой веб-страницы. Упрощенно схема работы представляется как «клиент - сервер». Клиент отправляет запрос, сервер его принимает, должным образом обрабатывает и возвращает конечный результат.

    Служит стандартом передачи файлов в сети. Клиент посылает запрос на некий файл, сервер ищет этот файл в своей базе и при успешном обнаружении отправляет его как ответ.

    Используется для передачи электронной почты. SMTP-операция включает в себя три последовательных шага:

    1. Определение адреса отправителя. Это необходимо для возвращения писем.
    2. Определение получателя. Этот шаг может повторяться некоторое количество раз при указании нескольких адресатов.
    3. Определение содержимого сообщения и отправка. В качестве служебной информации передаются данные о типе сообщения. Если сервер подтверждает готовность принять пакет, то совершается сама транзакция.

    Заголовок (Header)

    В заголовке содержатся служебные данные. Важно понимать, что они предназначаются только для конкретного уровня. Это значит, что как только пакет отправится к получателю, то будет обработан там по такой же модели, но в обратном порядке. Вложенный заголовок будет нести специальную информацию, которая может быть обработана только определенным образом.

    Например, заголовок, вложенный на транспортном уровне, на другой стороне может быть обработан только транспортным уровнем. Другие просто его проигнорируют.

    Транспортный уровень

    На транспортном уровне полученная информация обрабатывается как единый блок, вне зависимости от содержимого. Полученные сообщения делятся на сегменты, к ним добавляется заголовок, и все это отправляется ниже.

    Протоколы передачи данных:

    Самый распространенный протокол. Он отвечает за гарантированную передачу данных. При отправке пакетов контролируется их контрольная сумма, процесс транзакции. Это значит, что информация дойдет «в целости и сохранности» независимо от условий.

    UDP (User Datagram Protocol) - второй по популярности протокол. Он также отвечает за передачу данных. Отличительное свойство кроется в его простоте. Пакеты просто отправляются, не создавая особенной связи.

    TCP или UDP?

    У каждого из этих протоколов есть своя область применения. Она логически обусловлена особенностями работы.

    Основное преимущество UDP заключается в скорости передачи. TCP является сложным протоколом с множеством проверок, в то время как UDP представляется более упрощенным, а значит, и более быстрым.

    Недостаток кроется в простоте. Ввиду отсутствия проверок не гарантируется целостность данных. Таким образом, информация просто отправляется, а все проверки и подобные манипуляции остаются за приложением.

    UDP используется, например, для просмотра видео. Для видеофайла не критична потеря небольшого количества сегментов, в то время как скорость загрузки - важнейший фактор.

    Однако если необходимо отправить пароли или реквизиты банковской карты, то необходимость использования TCP очевидна. Потеря даже самой мизерной части данных может повлечь за собой катастрофические последствия. Скорость в этом случае не так важна, как безопасность.

    Сетевой уровень

    Сетевой уровень из полученной информации образует пакеты и добавляет заголовок. Наиболее важной частью данных являются IP и MAC-адреса отправителей и получателей.

    IP-адрес (Internet Protocol address) - логический адрес устройства. Содержит информацию о местоположении устройства в сети. Пример записи: .

    MAC-адрес (Media Access Control address) - физический адрес устройства. Используется для идентификации. Присваивается сетевому оборудованию на этапе изготовления. Представлен как шестибайтный номер. Например: .

    Сетевой уровень отвечает за:

    • Определение маршрутов доставки.
    • Передачу пакетов между сетями.
    • Присвоение уникальных адресов.

    Маршрутизаторы - устройства сетевого уровня. Они прокладывают путь между компьютером и сервером на основе полученных данных.

    Самый популярный протокол этого уровня - IP.

    IP (Internet Protocol) - интернет-протокол, предназначенный для адресации в сети. Используется для построения маршрутов, по которым происходит обмен пакетами. Не обладает никакими средствами проверки и подтверждения целостности. Для обеспечения гарантий доставки используется TCP, который использует IP в качестве транспортного протокола. Понимание принципов этой транзакции во многом объясняет основу того, как работает стек протоколов TCP/IP.

    Виды IP-адресов

    В сетях используются два вида IP-адресов:

    1. Публичные.
    2. Приватные.

    Публичные (Public) используются в Интернете. Главное правило - абсолютная уникальность. Пример их использования - маршрутизаторы, каждый из которых имеет свой IP-адрес для взаимодействия с сетью Интернет. Такой адрес называется публичным.

    Приватные (Private) не используются в Интернете. В глобальной сети такие адреса не являются уникальными. Пример - локальная сеть. Каждому устройству присваивается уникальный в пределах данной сети IP-адрес.

    Взаимодействие с сетью Интернет ведется через маршрутизатор, который, как уже было сказано выше, имеет свой публичный IP-адрес. Таким образом, все компьютеры, подключенные к маршрутизатору, представляются в сети Интернет от имени одного публичного IP-адреса.

    IPv4

    Самая распространенная версия интернет-протокола. Предшествует IPv6. Формат записи - четыре восьмибитных числа, разделенные точками. Через знак дроби указывается маска подсети. Длина адреса - 32 бита. В подавляющем большинстве случаев, когда речь идет об IP-адресе, имеется в виду именно IPv4.

    Формат записи: .

    IPv6

    Эта версия предназначается для решения проблем предыдущей версией. Длина адреса - 128 бит.

    Основная проблема, которую решает IPv6 - это исчерпание адресов IPv4. Предпосылки начали проявляться уже в начале 80-х годов. Несмотря на то, что эта проблема вступила в острую стадию уже в 2007-2009 годах, внедрение IPv6 очень медленно «набирает обороты».

    Главное преимущество IPv6 - более быстрое интернет-соединение. Это происходит из-за того, что для этой версии протокола не требуется трансляции адресов. Выполняется простая маршрутизация. Это является менее затратным и, следовательно, доступ к интернет-ресурсам предоставляется быстрее, чем в IPv4.

    Пример записи: .

    Существует три типа IPv6-адресов:

    1. Unicast.
    2. Anycast.
    3. Multicast.

    Unicast - тип одноадресных IPv6. При отправке пакет достигает только интерфейса, расположенного на соответствующем адресе.

    Anycast относится к групповым IPv6-адресам. Отправленный пакет попадет в ближайший сетевой интерфейс. Используется только маршрутизаторами.

    Multicast являются многоадресными. Это значит, что отправленный пакет достигнет всех интерфейсов, находящихся группе мультивещания. В отличие от broadcast, который является «вещанием для всех», multicast вещает лишь определенной группе.

    Маска подсети

    Маска подсети выявляет из IP-адреса подсеть и номер хоста.

    Например, IP-адрес имеет маску . В таком случае формат записи будет выглядеть так . Число «24» - это количество бит в маске. Восемь бит равняется одному октету, который также может называться байтом.

    Если подробнее, то маску подсети можно представить в двоичной системе счисления таким образом: . В ней имеется четыре октета, и запись состоит из «1» и «0». Если сложить количество единиц, то получим в сумме «24». К счастью, считать по единице не обязательно, ведь в одном октете - 8 значений. Видим, что три из них заполнены единицами, складываем и получаем «24».

    Если говорить именно о маске подсети, то в двоичном представлении она имеет в одном октете либо единицы, либо нули. При этом последовательность такова, что сначала идут байты с единицами, а только потом с нулями.

    Рассмотрим небольшой пример. Есть IP-адрес и маска подсети . Считаем и записываем: . Теперь сопоставляем маску с IP-адресом. Те октеты маски, в которых все значения равны единице (255) оставляют соответствующие им октеты в IP-адресе без изменения. Если же в значении нули (0), то октеты в IP-адресе также становятся нулями. Таким образом, в значении адреса подсети получаем .

    Подсеть и хост

    Подсеть отвечает за логическое разделение. По сути, это устройства, использующие одну локальную сеть. Определяется диапазоном IP-адресов.

    Хост - это адрес сетевого интерфейса (сетевой карты). Определяется из IP-адреса с помощью маски. Например: . Так как первые три октета - подсеть, то остается . Это и есть номер хоста.

    Диапазон адресов хоста - от 0 до 255. Хост под номером «0» является, собственно, адресом самой подсети. А хост под номером «255» является широковещательным.

    Адресация

    Для адресации в стеке протоколов TCP/IP используются три типа адресов:

    1. Локальные.
    2. Сетевые.
    3. Доменные имена.

    Локальными называются MAC-адреса. Они используются для адресации в таких технологиях локальной сети как, например, Ethernet. В контексте TCP/IP слово «локальные» означает, что они действуют лишь в пределах подсети.

    Сетевым адресом в стеке протоколов TCP/IP является IP-адрес. При отправке файла из его заголовка считывается адрес получателя. С его помощью маршрутизатор узнает номер хоста и подсеть и, основываясь на этой информации, прокладывает маршрут к конечному узлу.

    Доменные имена - это удобочитаемые адреса веб-сайтов в Интернете. Веб-сервера в сети Интернет доступны по публичному IP-адресу. Он успешно обрабатывается компьютерами, однако для людей представляется слишком неудобным. Для того чтобы избежать подобных сложностей, используются доменные имена, которые состоят из областей, называемых «доменами». Они располагаются в порядке строгой иерархии, от верхнего уровня к нижнему.

    Домен первого уровня представляет конкретную информацию. Общие (.org, .net) не ограничены какими-либо строгими границами. Обратная ситуация - с локальными (.us, .ru). Они, как правило, привязаны территориально.

    Домены низших уровней - это все остальное. Он может быть любого размера и содержать любое количество значений.

    Например, "www.test.quiz.sg" - корректное доменное имя, где «sg» - локальный домен первого (верхнего) уровня, «quiz.sg» - домен второго уровня, «test.quiz.sg» - домен третьего уровня. Доменные имена также могут называться DNS-именами.

    Устанавливает соответствие между доменными именами и публичным IP-адресом. При наборе доменного имени в строке браузера DNS обнаружит соответствующий IP-адрес и сообщит устройству. Устройство обработает этот и вернет его в виде веб-страницы.

    Канальный уровень

    На канальном уровне определяется взаимосвязь между устройством и физической средой передачи, добавляется заголовок. Отвечает за кодировку данных и подготовку фреймов для передачи по физической среде. На этом уровне работают сетевые коммутаторы.

    Самые распространенные протоколы:

    1. Ethernet.
    2. WLAN.

    Ethernet - наиболее распространенная технология проводных локальных сетей.

    WLAN - локальная сеть на основе беспроводных технологий. Взаимодействие устройств происходит без физических кабельных соединений. Пример самого распространенного метода - Wi-Fi.

    Настройка TCP/IP для использования статического IPv4-адреса

    Статический IPv4-адрес назначается напрямую в настройках устройства или автоматически при подключении к сети и является постоянным.

    Для настройки стека протоколов TCP/IP на использование постоянного IPv4-адреса необходимо ввести в консоль команду ipconfig/all и найти следующие данные.

    Настройка TCP/IP для использования динамического IPv4-адреса

    Динамический IPv4-адрес используется какое-то время, сдается в аренду, после чего меняется. Присваивается устройству автоматически при подключении к сети.

    Чтобы настроить стек протоколов TCP/IP на использование непостоянного IP-адреса необходимо зайти в свойства нужного соединения, открыть свойства IPv4 и поставить отметки так, как указано.

    Способы передачи данных

    Данные передаются через физическую среду тремя способами:

    • Simplex.
    • Half-duplex.
    • Full Duplex.

    Simplex - это односторонняя связь. Передача ведется только одним устройством, в то время как другое только принимает сигнал. Можно сказать, что информация транслируется только в одном направлении.

    Примеры симплексной связи:

    • Телевещание.
    • Сигнал от спутников GPS.

    Half-duplex - это двусторонняя связь. Однако только один узел может передавать сигнал в определенный момент времени. При такой связи два устройства не могут одновременно использовать один канал. Полноценная может быть невозможна физически или приводить к коллизиям. Говорится, что они конфликтуют за среду передачи. Этот режим применяется при использовании коаксиального кабеля.

    Пример полудуплексной связи - общение по рации на одной частоте.

    Full Duplex - полноценная двусторонняя связь. Устройства могут одновременно транслировать сигнал и производить прием. Они не конфликтуют за среду передачи. Этот режим применяется при использовании технологии Fast Ethernet и соединении с помощью витой пары.

    Пример дуплексной связи - общение по телефону через мобильную сеть.

    TCP/IP vs OSI

    Модель OSI определяет принципы передачи данных. Уровни стека протоколов TCP/IP прямо соответствуют этой модели. В отличие от четырехуровневого TCP/IP имеет 7 уровней:

    1. Физический (Physical).
    2. Канальный (Data Link).
    3. Сетевой (Network).
    4. Транспортный (Transport).
    5. Сеансовый (Session).
    6. Представительский (Presentation).
    7. Прикладной (Application).

    В данный момент не стоит сильно углубляться в эту модель, но необходимо хотя бы поверхностное понимание.

    Прикладной уровень в модели TCP/IP соответствует трем верхним уровням OSI. Все они работают с приложениями, поэтому можно отчетливо проследить логику такого объединения. Такая обобщенная структура стека протоколов TCP/IP способствует облегченному пониманию абстракции.

    Транспортный уровень остается без изменений. Выполняет одинаковые функции.

    Сетевой уровень также не изменен. Выполняет ровно те же задачи.

    Канальный уровень в TCP/IP соответствует двум последним уровням OSI. Канальный уровень устанавливает протоколы передачи данных через физическую среду.

    Физический представляет собой собственно физическую связь - электрические сигналы, коннекторы и т.п. В стеке протоколов TCP/IP было решено объединить эти два уровня в один, так как они оба работают с физической средой.

    Стек протоколов TCP/IP – это альфа и омега Интернета, и нужно не только знать, но также понимать модель и принцип работы стека.

    Мы разобрались с классификацией, стандартами сетей и моделью OSI. Теперь поговорим о стеке, на базе которого построена всемирная система объединенных компьютерных сетей Интернет.

    Модель TCP/IP

    Изначально данный стек создавался для объединения больших компьютеров в университетах по телефонным линиям связи соединения «точка-точка». Но когда появились новые технологии, широковещательные (Ethernet) и спутниковые, возникла необходимость адаптировать TCP/IP, что оказалось непростой задачей. Именно поэтому наряду с OSI появилась модель TCP/IP.

    Через модель описывается, как необходимо строить сети на базе различных технологий, чтобы в них работал стек протоколов TCP/IP.

    В таблице представлено сравнение моделей OSI и TCP/IP. Последняя включает в себя 4 уровня:

    1. Самый нижний, уровень сетевых интерфейсов , обеспечивает взаимодействие с сетевыми технологиями (Ethernet, Wi-Fi и т. д.). Это объединение функций канального и физического уровней OSI.
    2. Уровень интернет стоит выше, и по задачам перекликается с сетевым уровнем модели OSI. Он обеспечивает поиск оптимального маршрута, включая выявление неполадок в сети. Именно на этом уровне работает маршрутизатор.
    3. Транспортный отвечает за связь между процессами на разных компьютерах, а также за доставку переданной информации без дублирования, потерь и ошибок, в необходимой последовательности.
    4. Прикладной объединил в себе 3 уровня модели OSI: сеансовый, представления и прикладной. То есть он выполняет такие функции, как поддержка сеанса связи, преобразование протоколов и информации, а также взаимодействие пользователя и сети.

    Иногда специалисты пытаются объединить обе модели в нечто общее. Например, ниже приведено пятиуровневое представление симбиоза от авторов «Компьютерные сети» Э. Таненбаума и Д. Уэзеролла:

    Модель OSI обладает хорошей теоретической проработкой, но протоколы не используются. С моделью TCP/IP все иначе: протоколы широко используются, но модель подходит исключительно для описания сетей на базе TCP/IP.

    Не путайте их:

    • TCP/IP – это стек протоколов, представляющий собой основу Интернета.
    • Модель OSI (Базовая Эталонная Модель Взаимодействия Открытых Систем) подходит для описания самых разных сетей.

    Стек протоколов TCP/IP

    Рассмотрим каждый уровень более подробно.

    Нижний уровень сетевых интерфейсов включает в себя Ethernet, Wi-Fi и DSL (модем). Данные сетевые технологии формально не входят в состав стека, но крайне важны в работе интернета в целом.

    Основной протокол сетевого уровня – IP (Internet Protocol). Это маршрутизированный протокол, частью которого является адресация сети (IP-адрес). Здесь также работают такие дополнительные протоколы, как ICMP, ARRP и DHCP. Они обеспечивают работу сетей.

    На транспортной уровне расположились TCP – протокол, обеспечивающий передачу данных с гарантией доставки, и UDP – протокол для быстрой передачи данных, но уже без гарантии.

    Прикладной уровень – это HTTP (для web), SMTP (передача почты), DNS (назначение IP-адресам понятных доменных имен), FTP (передача файлов). Протоколов на прикладном уровне стека TCP/IP больше, но приведенные можно назвать самыми значимыми для рассмотрения.

    Помните, что стек протоколов TCP/IP задает стандарты связи между устройствами и содержит соглашения о межсетевом взаимодействии и маршрутизации.

     

     

    Это интересно: