→ Мультиплексоры и демультиплексоры: принцип работы, объяснение на простом примере, применение. Мультиплексоры и демультиплексоры Мультиплексор - это что

Мультиплексоры и демультиплексоры: принцип работы, объяснение на простом примере, применение. Мультиплексоры и демультиплексоры Мультиплексор - это что

В компьютерных схемах используется множество деталей, которые по отдельности кажутся бесполезными (и в большинстве случае они таковими и являются). Но стоит их, придерживаясь законов физики, собрать в логическую систему, как они могут оказаться просто незаменимыми. Хорошим примером являются мультиплексоры и демультиплексоры. Они играют важную роль при создании систем связи. Мультиплексор - это несложно. И вы сами в этом убедитесь прочитав статью.

Мультиплексор - это что?

Под мультиплексором понимают устройство, которое выбирает один из нескольких входов, а потом подключает к своему выходу. Всё зависит от состояния двоичного кода. Мультиплексор используется как переключатель сигналов, который имеет несколько входов и только один выход. Механизм его работы можно описать такой таблицей:

Подобные таблицы можно увидеть при изучении программирования, а конкретнее - при решении задач логического выбора. Сначала про аналоговый мультиплексор. Они соединяют входы и выходы напрямую. Существует оптический мультиплексор, который является более сложными. Они просто копируют получаемые значения.

Что такое демультиплексор?

Под демультиплексором понимают устройство с одним входом и множеством выходов. Что к чему будет подключаться - определяет двоичный код. Для этого он считывается, и выход, который имеет необходимое значение, подключается к входу. Как видите, данные устройства не обязательно должны действовать в паре для полноценной работы, а своё название получили из-за выполняемого функционала.

Схема мультиплексора

Давайте рассмотрим схему мультиплексора. Самая большая часть - это элемент И-ИЛИ. Он может иметь разное количество входов, начиная от двух и теоретически до бесконечности. Но, как правило, больше чем на 8 входов их не делают. Каждый отдельный вход называется инвертором. Те, что расположены слева, называют информационными. Посередине находятся адресные входы. Справа обычно подключается элемент, который определяет, будет ли работать сам мультиплексор. Это может быть дополнено входом с инверсией. Для письменного обозначения количества входов и для показа, что это мультиплексор, используют записи такого типа: «1*2». Под единицей понимают количество выводов, что идут в утройство. Двойка используется для обозначения выхода и обычно равна 1. В зависимости от количества адресных входов определяется, какой будет разряд у мультиплексора, и в данном случае используется формула: 2 n . Вместо n как раз и подставляют необходимое значение. В данном случае 2 2 = 4. Если для двоичного или троичного мультиплексора разница количества входов и выходов составляет соответственно два и три, то говорят, что они полные. При меньшем значении они неполные. Вот такое устройство имеет мультиплексор. Схема дополнительно представлена в виде изображения, чтобы вы имели самое полное представление о его строении.

Схема демультиплексора

Для коммутации каналов в демультиплексорах используются только логические элементы «И». Учитывайте, что КМОП-микросхемы часто строятся с применением ключей на полевых транзисторах. Поэтому к ним не применяется понятие демультиплексора. Можно ли сделать так, чтобы одно устройство могла изменить свои свойства на диаметрально противоположные? Да, если поменять местами информационные выходы и входы, вследствие чего к названию "мультиплексор" можно добавлять префикс «де-». По своему предназначению они похожи на дешифраторы. Несмотря на имеющуюся разницу, оба прибора в отечественных микросхемах обозначаются одними и теми же буквами - ИД. Демультиплексоры выполняют однооперандные (одновходные, унитарные) логические функции, которые имеют значительное количество возможных вариантов реакции на сигнал.

Виды мультиплексоров

В основном различают всего два вида мультиплексоров:

  1. Терминальные. Данный тип мультиплексоров располагают на концах линии связи, по которой осуществляется передача каких-то данных.
  2. Ввода/Вывода. Они применяются в качестве инструментария, который устанавливается в разрыв линии связи, чтобы вывести несколько каналов информации из общего потока. Таким способом обходят необходимость установки терминальных мультиплексоров, которые являются более дорогими механизмами.

Стоимость мультиплексоров

Стоит подметить, что мультиплексоры - удовольствие не из дешевых. Самый дешевый на сегодняшний момент стоит больше 12 тысяч рублей, верхний предел - 270 000. Но даже при таких ценах они всё равно почти всегда выгодней прокладки новой линии. Но такая выгода присутствует, только если есть квалифицированные кадры, которые смогут выполнить весь объем работ надлежащим образом и установят правильно мультиплексор. Цена может немного повыситься, если нет штатного специалиста. Но их всегда можно нанять в специализированных компаниях.

Мультиплексирование

Мультиплексирование сигналов осуществляется из-за значительной стоимости самих каналов связи, а также из-за затрат с их обслуживанием. К тому же с чисто физической точки зрения то, что имеется сейчас, не используется на полную мощность. Установка мультиплексора для работы в системе является более выгодной в денежном отношении, чем организация нового канала. К тому же на этот процесс приходится тратить меньше времени, что тоже предполагает определённые материальные выгоды.

В рамках статьи ознакомимся с принципом действия частотного мультиплексирования. При нём под каждый входящий поток в общем канале связи специально выделяют отдельный диапазон частот. А перед мультиплексором ставят задачу, чтобы он переносил спектр каждого из входящих спектров в другой интервал значений. Это делается для исключения возможности пересечения разных каналов. Чтобы они не превратились в помеху один для другого даже при выходе за отведённые рамки, используют технологию защитных интервалов. Она заключается в том, что оставляют определённую частоту между каждым каналом, которая примет на себя удар неполадок и не скажется на общем состоянии системы. Применено FDMA-мультиплексирование может быть в оптических и электрических линиях связи.

Из ограниченности ресурсов создалась возможность усовершенствования механизма. В конечном результате всё вылилось в процесс под названием «временное мультиплексирование». При данном механизме в общем высокоскоростном потоке отводится небольшой временной промежуток для передачи одного входного сигнала. Но это не единственный вариант реализации. Может быть и такое, что отведена определённая часть времени, которая циклично повторяется через заданный интервал. В общем перед мультиплексором в данных случаях стоит задача обеспечения циклического доступа к среде передачи данных, которая должна быть открыта входящим потокам на протяжении небольших промежутков.

Заключение

Мультиплексор - это то, что расширяет возможности коммуникаций. В рамках статьи были рассмотрены приборы, используемые для передачи данных, которые позволяют значительным образом экономить на данной статье расходов. Также было кратко рассмотрено их схематическое строение и понятие мультиплексирования, его особенности и применение. Таким образом, мы рассмотрели теоретическую базу. Она понадобится для перехода к практике при желании исследовать мультиплексоры и демультиплексоры.

МУЛЬТИПЛЕКСОРЫ/ ДЕМУЛЬТИПЛЕКСОРЫ.

Мультиплексоры.

Назначение и принцип работы.

Мультиплексор является устройством, которое осуществляет выборку одного из нескольких входов и подключает его к своему выходу. Мультиплексор имеет несколько информационных входов (D 0 , D 1 , ...), адресные входы (А 0 А 1 , ...), вход для подачи стробирующего сигнала С и один выход Q. На рис. 6.26,ф показано символическое изображение мультиплексора с четырьмя информационными входами.

Каждому информационному входу мультиплексора присваивается номер, называемый адресом. При подаче стробирующего сигнала на вход С мультиплексор выбирает один из входов, адрес которого задается двоичным кодом на адресных входах, и подключает его к выходу.

рис 6.26

Таким образом, подавая на адресные входы адреса различных информационных входов, можно передавать цифровые сигналы с этих входов на выход Q. Очевидно, число информационных входов n инф и число адресных входов n адр связаны соотношением n инф = 2 nадр.

Таблица 6.13

Адресные
входы

Стробирующий
сигнал

Выход

Функционирование мультиплексора определяется табл. 6.13. При отсутствии стробирующего сигнала (C = 0) связь между информационными входами и выходом отсутствует (Q = 0). При подаче стробирующего сигнала (C = l) на выход передается логический уровень того из информационных входов D i , номер которого i в двоичной форме задан на адресных входах. Так, при задании адреса A l A 0 = ll 2 = 3 10 на выход Q будет передаваться сигнал информационного входа с адресом 3 10 , т. е. D 3 .

(6.24)

По этой таблице можно записать следующее логическое выражение для выхода Q:

Построенная по этому выражению принципиальная схема мультиплексора показана на рис. 6.26,б.

В тех случаях, когда требуется передавать на выходы многоразрядные входные данные в параллельной форме, используется параллельное включение мультиплексоров по числу разрядов передаваемых данных.

Использование мультиплексоров для синтеза комбинационных устройств.

Мультиплексоры могут быть использованы для синтеза логических функций. При этом число используемых в схеме элементов (корпусов интегральных микросхем) может быть значительно уменьшено.

Логическое выражение мультиплексора (6.24) содержит члены со всеми комбинациями адресных переменных. Следовательно, если требуется синтезировать функцию трех переменных f(x 1 , x 2 , х 3), то две из этих переменных (например, x 1 , х 2) могут быть поданы на адресные входы А 1 , и А 0 , и третья x 3 - на информационный вход.

Например, пусть требуется синтезировать функцию, заданную табл. 6.14. Логическое выражение функции

Рассматривая переменные x l , х 2 в качестве адресных переменных получим табл. 6.15, из которой видно, что мультиплексор на выходе Q реализует заданную логическую функцию. Принципиальная схема показана на рис. 6.27.

Таблица 6.14

Таблица 6.15

Очевидно, на четырехвходовых мультиплексорах может быть синтезирована любая функция трех переменных, на восьмивходовых мультиплексорах - любая функция четырех переменных и т. д.

При синтезе комбинационных схем мультиплексоры могут быть использованы совместно с элементами некоторого базиса. Пусть общее число переменных функций n. Тогда, если мультиплексор имеет n адр адресных входов, то на них подаются n адр переменных, а на его информационные входы подаются функции n-n адр переменных.

рис 6.27

рис 6.28

рис 6.29

Пусть, например, требуется синтезировать логическую функцию четырех переменных с использованием четырехвходового мультиплексора. Если адресными переменными являются x 1 , х 2 , то на информационные входы мультиплексора должны подаваться функции переменных х 3 и x 4 , определяемые показанными в табл. 6.16 областями таблицы Вейча. Внутри каждой очерченной для информационных входов области таблицы Вейча проводится минимизация обычными методами, после чего строятся схемы, формирующие подаваемые на информационные входы мультиплексора функции.

Покажем этот прием на реализации функции, заданной табл. 6.17.

При подаче переменных x 1 и х 2 на адресные входы мультиплексора на его информационные входы должны подаваться D 0 = 1; D 1 = 0; D 2 = x 3 . 4 , D 3 = 4 . Реализующая заданную функцию схема показана на рис. 6.28.

Следует иметь в виду, что синтезируя логическое устройство с использованием мультиплексора, необходимо также построить вариант схемы без использования мультиплексора. Затем сравнением полученных вариантов определить, какой из вариантов оказывается лучшим по числу используемых в схеме корпусов интегральных схем.

Мультиплексорное дерево.

Максимальное число входов мультиплексоров, выполненных в виде интегральных схем, равно восьми. Если требуется построить мультиплексорное устройство с большим числом входов, можно объединить мультиплексоры в схему так называемого дерева. Такое мультиплексорное дерево, построенное на четырехвходовых мультиплексорах, показано на рис. 6.29. Схема состоит из четырех мультиплексоров первого уровня с адресными переменными x 1 , х 2 и мультиплексора второго уровня с адресными переменными x 3 , x 4 . Мультиплексорное устройство имеет 16 входов, разбитых на четверки, которые подключены к отдельным мультиплексорам первого уровня. Мультиплексор второго уровня, подключая к общему выходу устройства выходы отдельных мультиплексоров первого уровня, переключает четверки входов. Внутри же четверки требуемый вход выбирается мультиплексором первого уровня. По такой схеме, используя восьмивходовые мультиплексоры, можно построить мультиплексорное устройство, имеющее 64 входа.

Таблица 6.16

Таблица 6.17

В первом и втором уровнях мультиплексорного дерева можно использовать мультиплексоры с разным числом входов. Если в первом уровне такого дерева используются мультиплексоры с числом адресных переменных n адр1 , а во втором - с числом переменных n адр2 , то общее число входов мультиплексорного дерева будет равно n инф = 2 nадр1 + nадр2 , а число мультиплексоров в схеме составит 2 nадр2 + 1 .

Мультиплексорные деревья могут использоваться не только для переключения каналов, но и для синтеза логических функций.

Демультиплексоры.

Демультиплексор имеет один информационный вход и несколько выходов. Он представляет собой устройство, которое осуществляет коммутацию входа к одному из выходов, имеющему заданный адрес (номер). На рис. 6.30 показано символическое изображение демультиплексора с четырьмя выходами. Функционирование этого демультиплексора определяется табл. 6.18.

Объединяя мультиплексор с демультиплексором, можно построить устройство, в котором по заданным адресам один из входов подключается к одному из выходов (рис. 6.31). Таким образом, может быть выполнена любая комбинация соединений входов с выходами.

Например, при комбинации значений адресных переменных x l = l, x 2 = 0, x 3 = 0, x 4 = 0 вход D 2 окажется подключенным к выходу Y 0 .

Использование демультиплексора может существенно упростить построение логического устройства, имеющего несколько выходов, на которых формируются различные логические функции одних и тех же переменных.

Заметим, что если на вход демультиплексора подавать константу D = 1, то на выбранном в соответствии с заданным адресом выходе будет лог. 1, на остальных выходах - лог. 0. При этом по выполняемой функции демультиплексор превращается в дешифратор.

Таблица 6.18

Адресные
входы

Выходы

A 1

A 0

Y 0

Y 1

Y 2

Y 3

рис 6.30

рис 6.31

рис 6.32

При необходимости иметь большое число выходов может быть построено демультиплексорное дерево. На рис. 6.32 показано такое дерево, построенное на демультиплексорах с четырьмя выходами. Демультиплексор первого уровня подключает вход D к определенному демультиплексору второго уровня, демультиплексоры второго уровня выбирают нужный выход, куда и передается сигнал с входа D.

3.7. Мультиплексоры и демультиплексоры

Мультиплексор - это устройство, которое осуществляет выборку одного из нескольких входов и подключает его к своему единственному выходу, в зависимости от состояния двоичного кода. Другими словами, мультиплексор - переключатель сигналов, управляемый двоичным кодом и имеющий несколько входов и один выход. К выходу подключается тот вход, чей номер соответствует управляющему двоичному коду.

Ну и частное определение: мультиплексор - это устройство, преобразующее параллельный код в последовательный.

Структуру мультиплексора можно представить различными схемами, например, вот этой:

Рис. 1 – Пример схемы конкретного мультиплексора

Самый большой элемент здесь это элемент И-ИЛИ на четыре входа. Квадратики с единичками - инверторы.

Разберем выводы. Те, что слева, а именно D0-D3, называются информационными входами. На них подают информацию, которую предстоит выбрать. Входы А0-А1 называются адресными входами. Сюда и подается двоичный код, от которого зависит, какой из входов D0-D3 будет подключен к выходу, на этой схеме обозначенному как Y . Вход С – синхронизация, разрешение работы.

На схеме еще есть входы адреса с инверсией. Это чтобы сделать устройство более универсальным.

На рисунке показан, как еще его называют, 4Х1 мультиплексор. Как мы знаем, что число разных двоичных чисел, которые может задавать код, определяется числом разрядов кода как 2 n , где n – число разрядов. Задавать нужно 4 состояния мультиплексора, а, значит, разрядов в коде адреса должно быть 2 (2 2 = 4).

Для пояснения принципа работы этой схемы посмотрим на её таблицу истинности:

Так двоичный код выбирает нужный вход. Например, имеем четыре объекта, и они подают сигналы, а устройство отображения у нас одно. Берем мультиплексор. В зависимости от двоичного кода к устройству отображения подключается сигнал от нужного объекта.

Микросхемой мультиплексор обозначается так:

Рис. 2 – Мультиплексор как МКС

Демультиплексор - устройство, обратное мультиплексору. Т. е., у демультиплексора один вход и много выходов. Двоичный код определяет, какой выход будет подключен ко входу.

Другими словами, демультиплексор - это устройство, которое осуществляет выборку одного из нескольких своих выходов и подключает его к своему входу или, ещё, это переключатель сигналов, управляемый двоичным кодом и имеющий один вход и несколько выходов.

Ко входу подключается тот выход, чей номер соответствует состоянию двоичного кода. И частное определение: демультиплексор - это устройство, которое преобразует последовательный код в параллельный.

Обычно в качестве демультиплексора используют дешифраторы двоичного кода в позиционный, в которых вводят дополнительный вход стробирования.

Из-за сходства схем мультиплексора и демультиплексора в КМОП сериях есть микросхемы, которые одновременно являются мультиплексором и демультиплексором, смотря с какой стороны подавать сигналы.

Например, К561КП1, работающая как переключатель 8х1 и переключатель 1х8 (то есть, как мультиплексор и демультиплексор с восемью входами или выходами). Кроме того, в КМОП микросхемах помимо переключения цифровых сигналов (логических 0 или 1) существует возможность переключения аналоговых.

Другими словами, это переключатель аналоговых сигналов, управляемый цифровым кодом. Такие микросхемы называются коммутаторами. К примеру, с помощью коммутатора можно переключать сигналы, поступающие на вход усилителя (селектор входов). Рассмотрим схему селектора входов УМЗЧ . Построим её с использованием триггеров и мультиплексора.

Рис. 3 - Селектор входных сигналов

Итак, разберем работу. На триггерах микросхемы DD1 собран кольцевой счетчик нажатий кнопки разрядностью 2 (два триггера - 2 разряда). Двухразрядный двоичный код поступает на адресные входы D0-D1 микросхемы DD2. Микросхема DD2 представляет собой сдвоенный четырехканальный коммутатор.

В соответствии с двоичным кодом к выходам микросхемы А и В подключаются входы А0-А3 и В0-В3 соответственно. Элементы R1, R2, C1 устраняют дребезг контактов кнопки.

Дифференцирующая цепь R3C2 устанавливает триггеры в нулевое состояние при включении питания, при этом к выходу подключается первый вход. При нажатии на кнопку триггер DD1.1 переключается в состояние лог. 1 и к выходу подключается второй вход и т. д. Перебор входов идет по кольцу, начиная с первого.

С одной стороны просто, с другой немного неудобно. Кто его знает, сколько раз нажали на кнопку после включения и какой вход подключен к выходу сейчас. Хорошо бы поставить индикатор подключенного входа.

Вспоминаем семисегментный дешифратор. Переносим дешифратор с индикатором на схему коммутатора и первые два входа дешифратора (на схеме обозначен как DD3), т. е. 1 и 2 (выводы 7 и 1) подключаем к прямым выходам триггеров DD1.1 DD1.2 (выводы 1 и 13). Входы дешифратора 4 и 8 (выводы 2 и 6) соединяем с корпусом (т. е. подаем лог. 0). Индикатор будет показывать состояние кольцевого счетчика, а именно цифры от 0 до 3. Цифра 0 соответствует первому входу, 1 - 2-му и т. д.

Мультиплексор (MUX – multiplex- многократный) позволяет коммутировать в численном порядке информацию, поступающую с нескольких входных шин на одну выходную. С его помощью осуществляется временное разделение информации, поступающей по разным каналам.

Схема мультиплексора на 2 входа приведена на рис. 2.9.

Рис. 2.9 Схема двухвходового мультиплексора

– информационные входы

А – адресный вход

В зависимости от значения 1 или 0, подаваемых на адресный вход, на выходе Y формируется сигнал или . Это логическая структура мультиплексора вида 2:1. Читается: две линии к одной.

Логическая структура мультиплексора вида 4:1, составляющая ½ микросхемы К155КП2 приведена на рис. 2.10.

Рис. 2.10 Структурная схема мультиплексора вида 4:1

D 1 – D 4 – информационные входы

А, В – адресные входы

А – младший разряд

В – старший разряд

ЕI – разрешающий вход

Если EI=1, то на схемы И поступает 0 и мультиплексор не работает, то есть работа возможна только при EI=0.

В табл. 2.2 приведены все возможные сочетания входных воздействий и отклики мультиплексора.

Таблица 2.2

Мультиплексор вида 4:1

Входы Выход Y
Е А В
D1
D2
D3
D4

Мультиплексор К155КП1 имеет 16 информационных входов (D0 – D15) и четыре управляющих входа A, B, C, D, разрешающий вход V и один инверсный выход F. В зависимости от цифровой комбинации на управляющих входах сигналы с соответствующего информационного входа проходят в инвертированном виде на выход микросхемы. Передача информации возможна только при низком уровне на разрешающем входе.

Если требуется структура с большим количеством входов, то можно воспользоваться схемой наращивания разрядности, приведенной на рис. 2.11.

Рис. 2.1 Мультиплексор вида 32:1 на основе двух микросхем К155КП1

Адресными входами низших разрядов служат соединенные параллельно входы A, B, C и D. Разрешающие входы V в данном случае используются для подачи высшего (пятого) разряда Е: на первую микросхему в прямом виде, на вторую в инверсном. Первая микросхема работает при нулевом сигнале высшего разряда (Е=0); а вторая – при единичном (Е=1). Благодаря логическому элементу И-НЕ на выходе, выходные сигналы будут одинаковы с входными.

Мультиплексоры с Z-состоянием выходов легко позволяют увеличивать число коммутируемых каналов без привлечения дополнительных логических элементов для объединения выходов нескольких микросхем.

На рис. 2.12 приведена схема наращивания разрядности мультиплексора с использованием микросхем, имеющих Z-состояние выхода.

Рис. 2.12 Схема наращивания разрядности мультиплексоров, имеющих Z-состояние

Демультиплексоры

Демультиплексоры противоположны в функциональном отношении мультиплексорам, то есть их назначение распределить сигналы с одного информационного входа в желаемой последовательности по нескольким выходам.

Схема демультиплексора на 2 выхода представлена на рис. 2.13.

Рис. 2.13 Демультиплексор вида 1:2

Информационный вход

А – адресный вход

В зависимости от значения А информация поступает на или

Логические функции демультиплексора и дешифратора сходны между собой.

Дешифратор можно рассматривать как обращенный по входам демультиплексор, у которого адресные входы стали информационными, а бывший информационный вход стал управляющим.

Рассмотрим структуру демультиплексора-дешифратора, представленного на рис. 2.14.

Работу устройства описывают следующие булевые уравнения:

Рис. 2.14 Логическая структура демультиплексора 1:4 – дешифратора 2:4

A, B – адресные входы

Х – информационный вход

V – вход управления

В табл. 2.3 приведены режимы работы этой схемы в качестве демультиплексора и в качестве дешифратора.

Таблица 2.3

Таблица истинности демультиплексора-дешифратора

Входы Выходы
В А X V
DMX
DC

Типичным представителем демультиплексора - дешифратора является интегральная микросхема К155ИД3 (аналог 74154).

A, B, C, D – информационные входы

G1, G2 – разрешающие входы

Режим демультиплексора 1:16

G1 = 0, тогда G2 – информационный. Кодовая комбинация A-B-C-D переводит один из 16 выходов в активное состояние, которому соответствует логический 0, остальные выходы сохраняют логическую 1.

Существенно, что сигналы на активном выходе повторяют сигналы в прямом виде, поступающие на информационный вход.

Режим дешифратора 4:16

G1 = G2 = 0, тогда A-B-C-Dинформационные входы.

Если G1 или G2 равен 1, то на всех выходах, независимо от состояний входов A-B-C-D установится логическая 1.

Мультиплексоры и демультиплексоры (ДМХ) КМОП являются коммутаторами сигналов в прямом смысле, то есть могут передавать аналоговые сигналы.

MUX как универсальный логический элемент

Использование мультиплексора в качестве универсального логического элемента основано на общем свойстве логических функций независимо от числа аргументов всегда равняться логической единице или нулю. Если на адресные входы мультиплексора подавать входные переменные, зная, какой выходной уровень должен отвечать каждому сочетанию этих сигналов, то предварительно установив на информационных входах потенциалы нуля и единицы согласно программе, получим устройство, реализующее требуемую функцию.

Примеры применения мультиплексора

1. Преобразование параллельного кода в последовательный.

Одним из способов перехода от параллельного кода к последовательному может служить схема, приведенная на рис. 2.15.

Рис. 2.15 Схема преобразования параллельного кода Х 0 - Х 15 в последовательный

Генератор вырабатывает импульсы, которые поступая на счетчик СТ заставляют его триггеры последовательно менять свое состояние от 0000 до 1111. Параллельный шестнадцатиразрядный код, подлежащий преобразованию в последовательный, подается на входы Х 0 – Х 15 . Каждый из входов Х 0 – Х 15 соединяется с выходом MUX согласно списку состояний счетчика. Перебрав весь список, мы выведем последовательно на выход F все разряды параллельного кода.

2. Программируя информационные входы MUX согласно таблице истинности можно получить устройства, реализующие любую логическую функцию, содержащую до n+1 переменных, где n – число адресных входов мультиплексора.

Пример № 1 : Реализовать на MUX функцию, заданную таблицей истинности:

Видим, что в пределах одной большой строки аргумент «а» не меняется, а аргумент «b» колеблется 0-1. Оценим взаимосвязь поведения аргумента «b» и отклика функции Y. Очевидно, что в верхней строке Y повторяет значения b, а в нижней - противоположен. Следовательно, от мультиплексора требуется выполнение всего двух функций: b и b̅, а это в два раза уменьшает мощность применяемого МХ. Схема реализации той же задачи примет вид:

Каждый из рассмотренных способов решения имеет свои достоинства и недостатки. Так при решении задачи первым способом нам не потребуются дополнительные логические элементы – инверторы, а при втором способе потребуется один инвертор. Зато, как уже отмечалось, при втором способе решения требуется мультиплексор меньшей мощности.

Пример № 2: Функция трех переменных задана таблицей истинности:

Y Примечание
F 1 = 1
F 2 =
F 3 = 0
F 4 =

Расчленим мысленно таблицу истинности на группы по 2 строки в каждой (в каждой группе неизменны; аргумент может иметь 2 состояния; F принимает одно из четырех значений:

F 1 = 1, F 2 = , F 3 = 0, F 4 =

Если переменные сигналы подключить к адресным входам MUX А и В, а на информационные входы подать согласно таблице постоянные потенциалы логической единицы и нуля и переменные сигналы , то получим искомую схему.

Пример № 3: Таблицей истинности задана функция трех переменных (мажоритарный элемент)

a b с Y Примечание
F 1 = 0
F 2 = c
F 3 = c
F 4 = 1

Решение: расчленим мысленно таблицу истинности на группы по 2 строки в каждой (в каждой группе a и b неизменны; аргумент «c» может иметь 2 состояния; F принимает одно из трех значений:

F 1 = 0, F 2 = с, F 3 = с, F 4 = 1

Реализация на MUX 4:1 с разрешающим входом

Пример № 4 : Разработать схему компаратора двухразрядных чисел А и В. А = ; В=

F Примечание
F 1 =
F 2 = 0
F 3 =
F 4 = 0
F 5 = 0
F 6 =
F 7 = 0
F 8 =

Пример № 5: Сумматор на MUX . Составим таблицу истинности для сумм двух одноразрядных чисел А и В и функции переноса Р i . Разобьем на две строки, так, что А и В не меняют свое значение, а . Найдем и для каждой пары строк таблицы.

Входы Выходы
А В

Реализация: Воспользуемся MUX К155КП2 или 564КП1 имеющими 2 четырехвходовых MUX в одном корпусе.

Сумматоры

Это устройства, предназначенные для сложения чисел в двоичном и реже в 2-10 коде.

Классификация сумматоров:

1) По характеру действия: комбинационные (не имеющие памяти);

накопительные (сохраняющие результаты вычислений).

2) По способу обработки чисел: последовательного и параллельного типа.

3) По способу формирования сигнала переноса: с последовательным, сквозным и групповым переносом.

Полусумматор

S = - функция суммы

P = - функция переноса

S – бит суммы; Р – бит переноса;

HS – half sum – полусумматор.

Обозначение на схемах

Таблица истинности полусумматора.

Входы Выходы
А В Р S

Развернутая схема полусумматора приведена на рис. 2.16.

Рис. 2.16 Полусумматор

Полусумматор пригоден для сложения двух чисел только в младшем разряде. Как видно из схемы сложения двух многоразрядных чисел для n-го разряда необходим бит переноса . Поэтому полный сумматор должен иметь 3 входа.

Полный сумматор

Таблица истинности сумматора

Входы Выходы
А В

Схема полного сумматора на элементах М2 приведена на рис. 2.17.

Рис. 2.17 Полный сумматор на элементах М2

Сумматор можно выполнить и на простых логических элементах (рис. 2.18).

Рис. 2.18 Полный сумматор на элементарных логических элементах.

Условное обозначение одноразрядного сумматора

Сумматоры последовательного действия

Используется один общий для всех разрядов полный сумматор с дополнительной цепью задержки (рис. 2.19).

Рис. 2.19 Структура последовательного многоразрядного сумматора

Оба слагаемых кодируются последовательностями импульсов, которые синхронно вводятся в сумматор через входы А и В, начиная с младших разрядов.

Цепь временной задержки (л.з.) обеспечивает хранение импульса переноса на время одного такта, то есть до прихода пары слагаемых следующего разряда, с которыми он будет просуммирован.

Достоинство: малые аппаратные затраты.

Недостатки: 1) низкое быстродействие, так как одновременно суммируется лишь пара слагаемых;

2) для хранения А и В и преобразования последовательного кода выходных импульсов S в параллельный необходимы дополнительные аппаратные затраты.

Сумматоры параллельного типа

Схема сумматора параллельного типа с последовательным переносом приведена на рис. 2.20.

Рис. 2.20 Параллельный сумматор с трактом последовательного переноса

Число сумматоров равно числу разрядов слагаемых, поэтому слагаемые А и В складываются во всех разрядах одновременно, а перенос Р поступает с окончанием операции сложения в предыдущем разряде.

Недостатки: Ограниченное быстродействие, так как формирование сигнала переноса на выходе старшего разряда не может произойти до тех пор, пока сигнал переноса младшего разряда не распространится последовательно по всей схеме.

Уменьшение времени распространения сигнала переноса достигается тем, что для каждого двоичного разряда дополнительно находятся два сигнала: образования переноса G i и распространения переноса H i .

На сегодняшний день приобретение дополнительной техники или специальных устройств является достаточно дорогим удовольствием. Для того, чтобы сохранить свои финансовые затраты, довольно часто используют такие устройства, как мультиплексор и демультиплексор, которые являются своеобразными селекторами данных.

В случае с мультиплексором есть возможность через один выход пропустить информацию с нескольких входов. А демультиплексор действует с точностью наоборот – распределяет полученные данные с одного входа на разные выходы.

Мультиплексор представляет собой такое оборудование, которое содержит в себе несколько входов сигнала, один или несколько входов управления и лишь один общий выход. Данное устройство дает возможность передавать определенный канал из одного из имеющихся входов на специальный и единственный выход.

При всем этом выбирается вход с помощью подачи определенной комбинации сигналов управления. Чаще всего мультиплексор необходим там, где нужно обустраивать для передачи сигналов большое количество каналов (сигналов), а денег и технического оснащения для этого нет.

Работоспособность данного типа устройства основана на том, что сигнал связи, даже в случае, если он один, очень часто не применяется на всю мощность. По этой причине имеется лишнее место для запуска других потоков информации по одной линии.

Разумеется, что если все эти потоки пускаются в изначальном виде и в одно и то же время, то на выходе получится обычная мешанина информационных данных, которую будет практически нереально расшифровать. Из-за этого мультиплексор производится при помощи разделения потоков информации разнообразными методами.

Разделение по частотным полосам – это когда все потоки данных идет в одно и то же время, но с разной частотой. При этом не происходит смешивание потоков. Кроме этого, есть возможность пустить потоки в различных временных линиях. Также особо популярным является способ кодирования. В этом случае все потоки обозначаются специальными знаками, кодируются и одновременно отправляются.

Мультиплексоры классифицируют по нескольким критериям: по месту использования или по своим целевым задачам и так далее.


Линия связи мультиплексора и демультиплексора

Основным различием мультиплексоров считается то, каким образом происходит уплотнение сигналов в один сплошной поток.

Мультиплексирование бывает таких видов:

  • временного характера;
  • пространственного типа;
  • кодовым;

Как правило, если каналы являются проводными, то в применении актуальны первые два метода, а для беспроводных каналов применяются все четыре варианта. Обычно, если речь идет о мультиплексоре, то подразумевается проводное устройство.

По этой причине стоит более подробно ознакомиться с частотным и временным методами:

Методы мультиплексирования


Чтобы исполнить частотное мультиплексирование необходимо для всех потоков определить определенный частотный период. Перед самим процессом нужно переместить спектра всех каналов, что входят в период иной частоты, что не будет никак пересекаться с иными сигналами. Кроме того, для обеспечения надежности, меж частотами делают определенные интервалы для дополнительной защиты. Данный метод применяют и в электрических, и в оптических связных линиях.

Временной вариант


Временное мультиплексирование и демультиплексирование

Чтобы передать каждый сигнал в сплошном потоке, что входит, имеется определенное количество времени. В этом случае, перед устройством стоит особая задача – гарантировать доступ циклов к общей среде перенаправления для потоков, которые входят на маленький временной промежуток.

При этом необходимо сделать так, чтобы не возникло нежелательное накладывание каналов друг на друга, которое смешивает информацию. Для этого используют специальные интервалы для защиты, которые ставят меж этими самыми каналами.

Этот способ используют, как правило, для цифровых связных каналов.

Классификация мультиплексоров

Мультиплексоры существуют таких видов:

  1. Терминальные. Их размещают на концах связных линий.
  2. Ввода и вывода. Такие устройства встраивают в разрыв связных линий, чтобы из сплошного потока выводить определенные сигналы. При их помощи можно обойтись без дорогостоящих мультиплексоров терминального типа.

Также мультиплексоры классифицируются таким способом:

Аналоговые мультиплексоры


Ключи аналогового типа являются специальными аналого-дискретными элементами. Аналоговый ключ может быть представлен в качестве отдельно взятого устройства. Набор такого рода ключей, которые работают на единственный выход с цепями выборки определенного ключа, являются специальным аналоговым мультиплексором. Аналоговое оборудование в каждый период времени выбирает определенный входной канал и направляет его на специальное устройство

Цифровые мультиплексоры


Цифровые оборудования делятся на мультиплексоры второго, первого и иных высоких уровней. Цифровые мультиплексоры дают возможность принимать сигналы цифрового типа из устройств низкого уровня. При этом можно их записать, образовать цифровое течение высокого уровня. Таким образом, входящие потоки синхронизируются. Также можно отметить, что они обладают одинаковыми скоростями.

Области применения

Видеомультиплексоры применяют в телевизионной технике и различных дисплеях, в системах охранного видеонаблюдения. На мультиплексировании базируется GSM-связь и разнообразные входные модемы провайдеров в интернете. Также данные устройства применяют в GPS-приемниках, в волоконно-оптических связных линиях широкополосного типа.

Мультиплексоры используют в различных делителях частоты, специальных триггерных элементах, особых сдвигающихся устройствах и так далее. Их могут применять для того, чтобы преобразовать определенный параллельный двоичный код в последовательный.


Схема применения оптического мультиплексора

Структура мультиплексора

Мультиплексор состоит из специального дешифратора адреса входной линии каналов, разнообразных схем, в том числе и схемы объединения.

Структуру мультиплексора можно рассмотреть на примере его общей схемы. Входные данные логического типа поступают на выходы коммутатора, и далее через него направляются на выход. На вход управления подается слова адресных каналов. Само устройство тоже может обладать специальным входом управления, который дает возможность проходить или не проходить входному каналу на выход.

Существуют типы мультиплексоров, которые обладают выходом с тремя состояниями. Все нюансы работы мультиплексора зависят от его модели.

Демультиплексор

Демультиплексор представляет собой логическое устройство, которое предназначено для того, чтобы свободно переключать сигнал с одного входа информации на один из имеющихся информационных выходов. На деле демультиплексор является противоположностью мультиплексору.

Во время передачи данных по общему сигналу с разделением по временному ходу необходимо как использование мультиплексоров, так и применение демультиплексоров, то есть прибор обратного функционального назначения. Это устройство распределяет информационные данные из одного сигнала между несколькими приемниками данных.

Особым отличием данного типа устройства от мультиплексоров считается то, что есть возможность обледенить определенное количество входов в один, не применяя при этом дополнительных схем. Но для того, чтобы увеличить нагрузку микросхемы, на выходе устройства для увеличения входного канала рекомендуется установить специальный инвертор.

В схеме самого простого такого устройства для определенного выхода применяется двоичный дешифратор. Стоит отметить, что при подробном изучении дешифратора, можно сделать демультиплексор гораздо проще. Для этого необходимо ко всем логическим элементам, которые входят в структуру дешифратора прибавить еще вход. Данную структуру достаточно часто называют дешифратором, который имеет вход разрешения работы.

На что следует обратить внимание при выборе мультиплексора?

  1. Какие камеры используются – черно-белые, цветные?
  2. Общее количество камер, которое возможно подключить к устройству.
  3. Тип мультиплексора.
  4. Разрешение устройства.
  5. Наличие детектора, определяющего движение.
  6. Можно ли подключить второй экран монитора?

При выборе мультиплексора или демультиплексора необходимо учитывать все нюансы и технические характеристики устройства.

 

 

Это интересно: