→ Измерение количества информации формула шеннона. Вероятностный подход к оценке количества информации. Формула Шеннона. Контрольные вопросы и задания

Измерение количества информации формула шеннона. Вероятностный подход к оценке количества информации. Формула Шеннона. Контрольные вопросы и задания

Американский инженер Р. Хартли в 1928 г. процесс получения информации рассматривал как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определял как двоичный логарифм N.

Формула Хартли: I = log 2 N или N = 2 i

Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: I = log 2 100 > 6,644. Таким образом, сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6,644 единицы информации.

Приведем другие примеры равновероятных сообщений :

1. при бросании монеты: «выпала решка», «выпал орел»;

2. на странице книги: «количество букв чётное», «количество букв нечётное».

Определим теперь, являются ли равновероятными сообщения «первой выйдет из дверей здания женщина» и«первым выйдет из дверей здания мужчина ». Однозначно ответить на этот вопрос нельзя. Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе .

Формула Шеннона: I = - (p 1 log 2 p 1 + p 2 log 2 p 2 + . . . + p N log 2 p N),

где p i - вероятность того, что именно i-е сообщение выделено в наборе из N сообщений.

Легко заметить, что если вероятности p 1 , ..., p N равны, то каждая из них равна 1 / N, и формула Шеннона превращается в формулу Хартли.

Помимо двух рассмотренных подходов к определению количества информации, существуют и другие. Важно помнить, что любые теоретические результаты применимы лишь к определённому кругу случаев, очерченному первоначальными допущениями .

В качестве единицы информации Клод Шеннон предложил принять один бит (англ. bit - binary digit - двоичная цифра).

Бит в теории информации - количество информации, необходимое для различения двух равновероятных сообщений (типа «орел»-«решка», «чет»-«нечет» и т.п.).

В вычислительной технике битом называют наименьшую «порцию» памяти компьютера, необходимую для хранения одного из двух знаков «0» и «1», используемых для внутримашинного представления данных и команд.

Бит - слишком мелкая единица измерения. На практике чаще применяется более крупная единица - байт , равная восьми битам. Именно восемь битов требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера (256=2 8).



Широко используются также ещё более крупные производные единицы информации:

1 Килобайт (Кбайт) = 1024 байт = 210 байт,

1 Мегабайт (Мбайт) = 1024 Кбайт = 220 байт,

1 Гигабайт (Гбайт) = 1024 Мбайт = 230 байт.

В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:

1 Терабайт (Тбайт) = 1024 Гбайт = 240 байт,

1 Петабайт (Пбайт) = 1024 Тбайт = 250 байт.

За единицу информации можно было бы выбрать количество информации, необходимое для различения, например, десяти равновероятных сообщений. Это будет не двоичная (бит), а десятичная (дит ) единица информации.

Количество информации, заключенное в сообщении, определяется объемом знаний, который несет это сообщение получающему его человеку. Сообщение содержит информацию для человека, если заключенные в нем сведения являются для этого человека новыми и понятными, и, следовательно, пополняют его знания.

Информацию, которую получает человек, можно считать мерой уменьшения неопределенности знаний. Если некоторое сообщение приводит к уменьшению неопределенности наших знаний, то можно говорить, что такое сообщение содержит информацию.

За единицу количества информации принято такое количество информации, которое мы получаем при уменьшении неопределенности в 2 раза. Такая единица названа бит .

В компьютере информация представлена в двоичном коде или на машинном языке, алфавит которого состоит из двух цифр (0 и 1). Эти цифры можно рассматривать как два равновероятных состояния. При записи одного двоичного разряда реализуется выбор одного из двух возможных состояний (одной из двух цифр) и, следовательно, один двоичный разряд несет количество информации в 1 бит. Два двоичных разряда несут информацию 2 бита, три разряда – 3 бита и т.д.



Поставим теперь обратную задачу и определим: «Какое количество различных двоичных чисел N можно записать с помощью I двоичных разрядов?» С помощью одного двоичного разряда можно записать 2 различных числа (N=2=2 1), с помощью двух двоичных разрядов можно записать четыре двоичных числа (N=4=2 2), с помощью трех двоичных разрядов можно записать восемь двоичных чисел (N=8=2 3) и т.д.

В общем случае количество различных двоичных чисел можно определить по формуле

N – количество возможных событий (равновероятных)!!!;

В математике существует функция, с помощью которой решается показательное уравнение, эта функция называется логарифмом. Решение такого уравнения имеет вид:

Если события равновероятны , то количество информации определяется по данной формуле.

Количество информации для событий с различными вероятностями определяется по формуле Шеннона :

,

где I – количество информации;

N – количество возможных событий;

P i – вероятность отдельных событий.

Пример 3.4

В барабане для розыгрыша лотереи находится 32 шара. Сколько информации содержит сообщение о первом выпавшем номере (например, выпал номер 15)?

Решение:

Поскольку вытаскивание любого из 32 шаров равновероятно, то количество информации об одном выпавшем номере находится из уравнения: 2 I =32.

Но 32=2 5 . Следовательно, I=5 бит. Очевидно, ответ не зависит от того, какой именно выпал номер.

Пример 3.5

Какое количество вопросов достаточно задать вашему собеседнику, чтобы наверняка определить месяц, в котором он родился?

Решение:

Будем рассматривать 12 месяцев как 12 возможных событий. Если спрашивать о конкретном месяце рождения, то, возможно, придется задать 11 вопросов (если на 11 первых вопросов был получен отрицательный ответ, то 12-й задавать не обязательно, так как он и будет правильным).

Правильнее задавать «двоичные» вопросы, то есть вопросы, на которые можно ответить только «да» или «нет». Например, «Вы родились во второй половине года?». Каждый такой вопрос разбивает множество вариантов на два подмножества: одно соответствует ответу «да», а другое – ответу «нет».

Правильная стратегия состоит в том, что вопросы нужно задавать так, чтобы количество возможных вариантов каждый раз уменьшалось вдвое. Тогда количество возможных событий в каждом из полученных подмножеств будет одинаково и их отгадывание равновероятно. В этом случае на каждом шаге ответ («да» или «нет») будет нести максимальное количество информации (1 бит).

По формуле 2 и с помощью калькулятора получаем:

бита.

Количество полученных бит информации соответствует количеству заданных вопросов, однако количество вопросов не может быть нецелым числом. Округляем до большего целого числа и получаем ответ: при правильной стратегии необходимо задать не более 4 вопросов.

Пример 3.6

После экзамена по информатике, который сдавали ваши друзья, объявляются оценки («2», «3», «4» или «5»). Какое количество информации будет нести сообщение об оценке учащегося А, который выучил лишь половину билетов, и сообщение об оценке учащегося В, который выучил все билеты.

Решение:

Опыт показывает, что для учащегося А все четыре оценки (события) равновероятны и тогда количество информации, которое несет сообщение об оценке, можно вычислить по формуле (1):

На основании опыта можно также предположить, что для учащегося В наиболее вероятной оценкой является «5» (p 1 =1/2), вероятность оценки «4» в два раза меньше (p 2 =1/4), а вероятности оценок «2» и «3» еще в два раза меньше (p 3 =p 4 =1/8). Так как события неравновероятны, воспользуемся для подсчета количества информации в сообщении формулой 2:

Вычисления показали, что при равновероятных событиях мы получаем большее количество информации, чем при неравновероятных событиях.

Пример 3.7

В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика.

Решение:

Так как количество шариков разного цвета неодинаково, то вероятности зрительных сообщений о цвете вынутого из мешочка шарика также различаются и равны количеству шариков данного цвета деленному на общее количество шариков:

P б =0,1; P к =0,2; P с =0,3; P з =0,4.

События неравновероятны, поэтому для определения количества информации, содержащегося в сообщении о цвете шарика, воспользуемся формулой 2:

Для вычисления этого выражения, содержащего логарифмы можно воспользоваться калькулятором. I»1,85 бита.

Пример 3.8

Используя формулу Шеннона, достаточно просто определить, какое количество бит информации или двоичных разрядов необходимо, чтобы закодировать 256 различных символов. 256 различных символов можно рассматривать как 256 различных равновероятных состояний (событий). В соответствии с вероятностным подходом к измерению количества информации необходимое количество информации для двоичного кодирования 256 символов равно:

I=log 2 256=8 бит=1 байт

Следовательно, для двоичного кодирования 1 символа необходим 1 байт информации или 8 двоичных разрядов.

Какое количество информации содержится, к примеру, в тексте романа «Война и мир», во фресках Рафаэля или в генетическом коде человека? Ответа на эти вопросы наука не даёт и, по всей вероятности, даст не скоро. А возможно ли объективно измерить количество информации? Важнейшим результатом теории информации является следующий вывод:«В определенных, весьма широких условиях можно пренебречь качественными особенностями информации, выразить её количество числом, а также сравнить количество информации, содержащейся в различных группах данных».

В настоящее время получили распространение подходы к определению понятия «количество информации», основанные на том, что информацию, содержащуюся в сообщении, можно нестрого трактовать в смысле её новизны или, иначе, уменьшения неопределённости наших знаний об объекте. Эти подходы используют математические понятия вероятности и логарифма.

1928 год американский инженер Ральф Хартли рассматривает процесс получения информации как выбор одного сообщения из конечного заданного множества N равновероятных событий.

Формула Хартли:

где К - количество информации, N -число равновероятных событий.

Формула Хартли может быть записана и так: N=2k

Так как наступление каждого из N событий имеет одинаковую вероятность P, то:

где P- вероятность наступления события.

Тогда, формулу можно записать иначе:

1948 год американский ученый Клод Шеннон предложил другую формулу определения количества информации, учитывая возможную неодинаковую вероятность событий в наборе.

Формула Шеннона:

K = - (p1 *log2 p1+ p2 *log 2p 2 + p 3 *log 2p 3 +…+ pi * log2 pi),

где pi вероятность того, что именно i-е сообщение выделено в наборе из N сообщений.

Также эту формулу записывают:

Современная наука о свойствах информации и закономерностях информационных процессов называется теорией информации. Содержание понятия "информация" можно раскрыть на примере двух исторически первых подходов к измерению количества информации: подходов Хартли и Шеннона: первый из них основан на теории множеств и комбинаторике, а второй - на теории вероятностей.

Информация может пониматься и интерпретироваться в различных проблемах, предметных областях по-разному. Вследствие этого, имеются различные подходы к определению измерения информации и различные способы введения меры количества информации.

Количество информации - числовая величина, адекватно характеризующая актуализируемую информацию по разнообразию, сложности, структурированности (упорядоченности), определенности, выбору состояний отображаемой системы.

Если рассматривается некоторая система, которая может принимать одно из n возможных состояний, то актуальной задачей является задача оценки этого выбора, исхода. Такой оценкой может стать мера информации (события).

Мера - непрерывная действительная неотрицательная функция, определенная на множестве событий и являющаяся аддитивной.

Меры могут быть статические и динамические, в зависимости от того, какую информацию они позволяют оценивать: статическую (не актуализированную; на самом деле оцениваются сообщения без учета ресурсов и формы актуализации) или динамическую (актуализированную т.е. оцениваются также и затраты ресурсов для актуализации информации).

Существуют различные подходы к определению количества информации. Наиболее часто используются следующие объемный и вероятностный.

Объемный подход.

Используется двоичная система счисления, потому что в техническом устройстве наиболее просто реализовать два противоположных физических состояния: намагничено / не намагничено, вкл./выкл., заряжено / не заряжено и другое.

Объём информации, записанной двоичными знаками в памяти компьютера или на внешнем носителе информации, подсчитывается просто по количеству требуемых для такой записи двоичных символов. При этом невозможно нецелое число битов.

Для удобства использования введены и более крупные, чем бит, единицы количества информации. Так, двоичное слово из восьми знаков содержит один байт информации, 1024 байта образуют килобайт (кбайт), 1024 килобайта - мегабайт (Мбайт), а 1024 мегабайта - гигабайт (Гбайт).

Энтропийный (вероятностный) подход.

Этот подход принят в теории информации и кодирования. Данный способ измерения исходит из следующей модели: получатель сообщения имеет определённое представление о возможных наступлениях некоторых событий. Эти представления в общем случае недостоверны и выражаются вероятностями, с которыми он ожидает то или иное событие. Общая мера неопределённостей называется энтропией. Энтропия характеризуется некоторой математической зависимостью от совокупности вероятности наступления этих событий.

Количество информации в сообщении определяется тем, насколько уменьшилась эта мера после получения сообщения: чем больше энтропия системы, тем больше степень её неопределённости. Поступающее сообщение полностью или частично снимает эту неопределённость, следовательно, количество информации можно измерять тем, насколько понизилась энтропия системы после получения сообщения. За меру количества информации принимается та же энтропия, но с обратным знаком.

Подход Р. Хартли основан на фундаментальных теоретико-множественных, по существу комбинаторных основаниях, а также нескольких интуитивно ясных и вполне очевидных предположениях.

Если существует множество элементов и осуществляется выбор одного из них, то этим самым сообщается или генерируется определенное количество информации. Эта информация состоит в том, что если до выбора не было известно, какой элемент будет выбран, то после выбора это становится известным. Необходимо найти вид функции, связывающей количество информации, получаемой при выборе некоторого элемента из множества, с количеством элементов в этом множестве, т.е. с его мощностью.

Если множество элементов, из которых осуществляется выбор, состоит из одного единственного элемента, то ясно, что его выбор предопределен, т.е. никакой неопределенности выбора нет - нулевое количество информации.

Если множество состоит из двух элементов, то неопределенность выбора минимальна. В этом случае минимально и количество информации.

Чем больше элементов в множестве, тем больше неопределенность выбора, тем больше информации.

Таким образом, логарифмическая мера информации, предложенная Хартли, одновременно удовлетворяет условиям монотонности и аддитивности. Сам Хартли пришел к своей мере на основе эвристических соображений, подобных только что изложенным, но в настоящее время строго доказано, что логарифмическая мера для количества информации однозначно следует из этих двух постулированных им условий.

В 1948 году, исследуя проблему рациональной передачи информации через зашумлённый коммуникационный канал, Клод Шеннон предложил революционный вероятностный подход к пониманию коммуникаций и создал первую, истинно математическую, теорию энтропии. Его сенсационные идеи быстро послужили основой разработки двух основных направлений: теории информации, которая использует понятие вероятности и эргодическую теорию для изучения статистических характеристик данных и коммуникационных систем, и теории кодирования, в которой используются главным образом алгебраические и геометрические инструменты для разработки эффективных кодов.

Клод Шеннон предположил, что прирост информации равен утраченной неопределённости, и задал требования к её измерению:

  • 1. мера должна быть непрерывной; то есть изменение значения величины вероятности на малую величину должно вызывать малое результирующее изменение функции;
  • 2. в случае, когда все варианты (буквы в приведённом примере) равновероятны, увеличение количества вариантов (букв) должно всегда увеличивать значение функции;
  • 3. должна быть возможность сделать выбор (в нашем примере букв) в два шага, в которых значение функции конечного результата должно являться суммой функций промежуточных результатов.

Поэтому функция энтропии должна удовлетворять условиям:

определена и непрерывна для всех,

где для всех и. (Нетрудно видеть, что эта функция зависит только от распределения вероятностей, но не от алфавита).

Для целых положительных, должно выполняться следующее неравенство:

Для целых положительных, где, должно выполняться равенство:

информационный пропускной энтропийный

Шеннон определил, что измерение энтропии, применяемое к источнику информации, может определить требования к минимальной пропускной способности канала, требуемой для надёжной передачи информации в виде закодированных двоичных чисел. Для вывода формулы Шеннона необходимо вычислить математическое ожидание «количества информации», содержащегося в цифре из источника информации. Мера энтропии Шеннона выражает неуверенность реализации случайной переменной. Таким образом, энтропия является разницей между информацией, содержащейся в сообщении, и той частью информации, которая точно известна (или хорошо предсказуема) в сообщении. Примером этого является избыточность языка -- имеются явные статистические закономерности в появлении букв, пар последовательных букв, троек и т.д.

В 1928 г. американский инженер Р. Хартли предложил научный подход к оценке сообщений. Предложенная им формула имела следующий вид:

I = log 2 K , Где К - количество равновероятных событий; I - количество бит в сообщении, такое, что любое из К событий произошло. Иногда формулу Хартли записывают так:

I = log 2 K = log 2 (1 / р) = - log 2 р, т. к. каждое из К событий имеет равновероятный исход р = 1 / К, то К = 1 / р.

Задача.

Шарик находится в одной из трех урн: А, В или С. Определить сколько бит информации содержит сообщение о том, что он находится в урне В.

Такое сообщение содержит I = log 2 3 = 1,585 бита информации.

Но не все ситуации имеют одинаковые вероятности реализации. Существует много таких ситуаций, у которых вероятности реализации различаются. Например, если бросают несимметричную монету или "правило бутерброда".

"Однажды в детстве я уронил бутерброд. Глядя, как я виновато вытираю масляное пятно, оставшееся на полу, старший брат успокоил меня:

Не горюй, это сработал закон бутерброда.

Что еще за закон такой? - спросил я.

Закон, который гласит: "Бутерброд всегда падает маслом вниз". Впрочем, это шутка, - продолжал брат.- Никакого закона нет. Прсто бутерброд действительно ведет себя довольно странно: большей частью масло оказывается внизу.

Давай-ка еще пару раз уроним бутерброд, проверим, - предложил я. - Все равно ведь его придется выкидывать.

Проверили. Из десяти раз восемь бутерброд упал маслом вниз.

И тут я задумался: а можно ли заранее узнать, как сейчас упадет бутерброд маслом вниз или вверх?

Наши опыты прервала мать…" (Отрывок из книги "Секрет великих полководцев", В.Абчук).

В 1948 г. американский инженер и математик К Шеннон предложил формулу для вычисления количества информации для событий с различными вероятностями. Если I - количество информации, К - количество возможных событий, рi - вероятности отдельных событий, то количество информации для событий с различными вероятностями можно определить по формуле:

I = - Sum р i log 2 р i , где i принимает значения от 1 до К.

Формулу Хартли теперь можно рассматривать как частный случай формулу Шеннона:

I = - Sum 1 / К log 2 (1 / К) = I = log 2 К.

При равновероятных событиях получаемое количество информации максимально.

Задачи. 1. Определить количество информации, получаемое при реализации одного из событий, если бросают а) несимметричную четырехгранную пирамидку; б) симметричную и однородную четырехгранную пирамидку. Решение. а) Будем бросать несимметричную четырехгранную пирамидку. Вероятность отдельных событий будет такова: р1 = 1 / 2, р2 = 1 / 4, р3 = 1 / 8, р4 = 1 / 8, тогда количество информации, получаемой после реализации одного из этих событий, рассчитывается по формуле: I = -(1 / 2 log 2 1/2 + 1 / 4 log 2 1/4 + 1 / 8 log 2 1/8 + 1 / 8 log 2 1/8) = 1 / 2 + 2 / 4 + + 3 / 8 + 3 / 8 = 14/8 = 1,75 (бит). б) Теперь рассчитаем количество информации, которое получится при бросании симметричной и однородной четырехгранной пирамидки: I = log 2 4 = 2 (бит). 2. Вероятность перового события составляет 0,5, а второго и третьего 0,25. Какое количество информации мы получим после реализации одного из них? 3. Какое количество информации будет получено при игре в рулетку с 32-мя секторами?

Физиологи и психологи научились определять количество информации, которое человек может воспринимать при помощи органов чувств, удерживать в памяти и подвергать обработке. Информацию можно представлять в различных формах: звуковой, знаковой и др. рассмотренный выше способ определения количества информации, получаемое в сообщениях, которые уменьшают неопределенность наших знаний, рассматривает информацию с позиции ее содержания, новизны и понятности для человека. С этой точки зрения в опыте по бросанию кубика одинаковое количество информации содержится в сообщениях "два", "вверх выпала грань, на которой две точки" и в зрительном образе упавшего кубика.

При передаче и хранении информации с помощью различных технических устройств информацию следует рассматривать как последовательность знаков (цифр, букв, кодов цветов точек изображения), не рассматривая ее содержание.

Считая, что алфавит (набор символов знаковой системы) - это событие, то появление одного из символов в сообщении можно рассматривать как одно из состояний события. Если появление символов равновероятно, то можно рассчитать, сколько бит информации несет каждый символ. Информационная емкость знаков определяется их количеством в алфавите. Чем из большего количества символов состоит алфавит, тем большее количество информации несет один знак. Полное число символов алфавита принято называть мощностью алфавита.

Молекулы ДНК (дезоксирибонуклеиновой кислоты) состоят из четырех различных составляющих (нуклеотидов), которые образуют генетический алфавит. Информационная емкость знака этого алфавита составляет:

4 = 2 I , т.е. I = 2 бит.

При таком подходе в результате сообщения о результате бросания кубика, получим различное количество информации, Чтобы его подсчитать, нужно умножить количество символов на количество информации, которое несет один символ.

Количество информации, которое содержит сообщение, закодированное с помощью знаковой системы, равно количеству информации, которое несет один знак, умноженному на число знаков в сообщении.

Своё дальнейшее развитие теория информации получила в работах Клода Шеннона, американского инженера и математика (1916 – 2001). Шеннон является одним из создателей математической теории информации. Его основные труды посвящены теории релейно-контактных схем, математической теории связи, кибернетике. К. Шеннон изучал вопросы передачи информации в телеграфии, телефонии или радиовещании в виде сигналов электромагнитных колебаний. Одна из задач, которую ставил перед собой К. Шеннон, заключалась в том, чтобы определить систему кодирования, позволяющую оптимизировать скорость и достоверность передачи информации. Так как в годы войны он служил в шифровальном отделе, где занимался разработкой криптографических систем, то это позже помогло ему открыть методы кодирования с коррекцией ошибок. В своих работах 1948-1949 годов К. Шеннон определил количество информации через энтропию - величину, известную в термодинамике и статистической физике как мера разупорядоченности системы, а за единицу количества информации принял то, что впоследствии назвали битом (bit).

Для дальнейшего изложения необходимо использовать некоторые понятия теории вероятности: случайное событие, опыт, вероятность события, случайная величина. В окружающем нас мире происходят различные события, причём мы можем интуитивно, основываясь на опыте, оценивать одни из них как более возможные, чем другие. Случайным называют событие, которое может наступить или не наступить в результате некоторого испытания, опыта или эксперимента. Будем обозначать события заглавными буквами A, B, C и т.д. Количественная мера возможности наступления некоторого события A называется его вероятностью и обозначается как p(A), p – от английского probability. Чем более возможно наступление случайного события, тем больше его вероятность: если A более возможно чем B, то p(A) > p(B). Вводится понятие достоверного события – событие, которое обязательно наступит. Это событие обозначают W и полагают, что его вероятность p(W) = 1. Невозможным называют событие, которое никогда не произойдёт. Его обозначают Æ и полагают, что его вероятность p(Æ) = 0. Для вероятностей всех остальных событий A выполняется неравенство p(Æ) < p(A) < p(W), или 0 < p(A) < 1.

Для событий вводится понятие суммы и произведения. Сумма событий A+B – это событие, которое состоит в наступлении события A или В. Произведение событий A*B состоит в одновременном наступлении события A и B. События A и B несовместны , если они не могут наступить вместе в результате одного испытания. Вероятность суммы несовместных событий равна сумме их вероятностей. Если А и В несовместные события, то p(A+B) = p(A) + p(B).


События A1, A2, A3, …An образуют полную группу , если в результате опыта обязательно наступит хотя бы одно из них. Если события A1, A2, A3, …An попарно несовместны и образуют полную группу, то сумма их вероятностей p1+p2+p3+ …. pn =1. Если они при этом ещё и равновероятны, то вероятность каждого равна p = 1/n , где n – число событий. Вероятность события определяется как отношение числа благоприятных событию исходов опыта к общему числу исходов. Частота события – эмпирическое приближение его вероятности. Она вычисляется в результате проведения серии опытов как отношение числа опытов, в которых событие наступило к общему числу опытов. При большом числе опытов (испытаний) частота события стремится к его вероятности.

К. Шеннон, используя подход Р. Хартли, обратил внимание на то, что при передаче словесных сообщений частота (вероятность) использования различных букв алфавита не одинакова: некоторые буквы используются очень часто, другие - редко.

Рассмотрим алфавит A m состоящий из m символов. Обозначим через p i вероятность (частоту) появления i-ого символа в любой позиции передаваемого сообщения, состоящего из n символов. Один i – ый символ алфавита несёт количество информации равное -Log 2 (p i). Перед логарифмом стоит «минус» потому, что количество информации величина неотрицательная, а Log 2 (x) <0 при 0

На месте каждого символа в сообщении может стоять любой символ алфавита A m ; количество информации, приходящееся на один символ сообщения, равно среднему значению информации по всем символам алфавита A m:

Общее количество информации, содержащееся в сообщении из n символов равно:

Если все символы алфавита A m появляются с равной вероятностью, то все p i = p. Так как Sр i = 1, то p = 1/m.

Формула (3.2) в случае, когда все символы алфавита равновероятны, принимает вид

Вывод: формула Шеннона (3.2) в случае, когда все символы алфавита равновероятны, переходит в формулу Хартли (2.2).

В общем случае количество энтропии H произвольной системы X (случайной величины), которая может находиться в m различных состояниях x 1 , x 2 , … x m c вероятностями p 1 , p 2 , … p m , вычисленное по формуле Шеннона, равно

Напомним, что p 1 + p 2 + … +p m = 1. Если все p i одинаковы, то все состояния системы X равновероятны; в этом случае p i = 1/m, и формула (3.3) переходит в формулу Хартли (2.5): H(X) = Log 2 (m).

Замечание. Количество энтропии системы (случайной величины) Х не зависит от того, в каких конкретно состояниях x 1 , x 2 , … x m может находиться система, но зависит от числа m этих состояний и от вероятностей p 1 , p 2 , … p m , с которыми система может находиться в этих состояниях. Это означает, что две системы, у которых число состояний одинаково, а вероятности этих состояний p 1 , p 2 , … p m равны (с точностью до порядка перечисления), имеют равные энтропии.

Теорема. Максимум энтропии H(X) достигается в том случае, когда все состояния системы равновероятны. Это означает, что

Билет 8

Информацио́нная энтропи́я - мера неопределённости или непредсказуемости информации, неопределённость появления какого-либо символа первичного алфавита. При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.

Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других. Если же учесть, что некоторые сочетания букв (в этом случае говорят об энтропии -ого порядка, см. ниже) встречаются очень редко, то неопределённость уменьшается еще сильнее.

Для иллюстрации понятия информационной энтропии можно также прибегнуть к примеру из области термодинамической энтропии, получившему название демона Максвелла. Концепции информации и энтропии имеют глубокие связи друг с другом, но, несмотря на это, разработка теорий в статистической механике и теории информации заняла много лет, чтобы сделать их соответствующими друг другу.

Энтропия - это количество информации, приходящейся на одно элементарное сообщение источника, вырабатывающего статистически независимые сообщения.

Формула Хартли определяет количество информации, содержащееся в сообщении длины n.

Имеется алфавит А, из букв которого составляется сообщение:

Количество возможных вариантов разных сообщений:

где N - возможное количество различных сообщений, шт; m - количество букв в алфавите, шт; n - количество букв в сообщении, шт.

Пример: Алфавит состоит из двух букв «B» и «X», длина сообщения 3 буквы - таким образом, m=2, n=3. При выбранных нами алфавите и длине сообщения можно составить разных сообщений «BBB», «BBX», «BXB», «BXX», «XBB», «XBX», «XXB», «XXX» - других вариантов нет.

Формула Хартли определяется:

где I - количество информации, бит.

При равновероятности символов формула Хартли переходит в собственную информацию.

Формула Хартли была предложена Ральфом Хартли в 1928 году как один из научных подходов к оценке сообщений.

Формула Шеннона

Формулу для вычисления количества информации в случае различных вероятностей событий предложил К. Шеннон в 1948 году. В этом случае количество информации определяется по формуле:

(2.2)

Где I - количество информации;
N - количество возможных событий;
р i - вероятность i-го события.

Например, пусть при бросании несимметричной четырехгранной пирамидки вероятности отдельных событий будут равны:

Р 1 = 1/2, р 2 = 1/4, р 3 = 1/8, р 4 = 1/8.

Билет № 5

Способы кодирования информации.
Одна и та же информация может быть представлена (закодирована) в нескольких формах. C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до появления компьютеров. Грандиозные достижения человечества - письменность и арифметика - есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.
Двоичное кодирование – один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.
Кодирование символьной (текстовой) информации.
Основная операция, производимая над отдельными символами текста - сравнение символов.
При сравнении символов наиболее важными аспектами являются уникальность кода для каждого символа и длина этого кода, а сам выбор принципа кодирования практически не имеет значения.
Для кодирования текстов используются различные таблицы перекодировки. Важно, чтобы при кодировании и декодировании одного и того же текста использовалась одна и та же таблица.
Таблица перекодировки - таблица, содержащая упорядоченный некоторым образом перечень кодируемых символов, в соответствии с которой происходит преобразование символа в его двоичный код и обратно.
Наиболее популярные таблицы перекодировки: ДКОИ-8, ASCII, CP1251, Unicode.
Исторически сложилось, что в качестве длины кода для кодирования символов было выбрано 8 бит или 1 байт. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.
Различных комбинаций из 0 и 1 при длине кода 8 бит может быть 28 = 256, поэтому с помощью одной таблицы перекодировки можно закодировать не более 256 символов. При длине кода в 2 байта (16 бит) можно закодировать 65536 символов.
Кодирование числовой информации.
Сходство в кодировании числовой и текстовой информации состоит в следующем: чтобы можно было сравнивать данные этого типа, у разных чисел (как и у разных символов) должен быть различный код. Основное отличие числовых данных от символьных заключается в том, что над числами кроме операции сравнения производятся разнообразные математические операции: сложение, умножение, извлечение корня, вычисление логарифма и пр. Правила выполнения этих операций в математике подробно разработаны для чисел, представленных в позиционной системе счисления.
Основной системой счисления для представления чисел в компьютере является двоичная позиционная система счисления.
Кодирование текстовой информации
В настоящее время, большая часть пользователей, при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Подсчитаем, сколько всего символов и какое количество бит нам нужно.
10 цифр, 12 знаков препинания, 15 знаков арифметических действий, буквы русского и латинского алфавита, ВСЕГО: 155 символов, что соответствует 8 бит информации.
Единицы измерения информации.
1 байт = 8 бит
1 Кбайт = 1024 байтам
1 Мбайт = 1024 Кбайтам
1 Гбайт = 1024 Мбайтам
1 Тбайт = 1024 Гбайтам
Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.
Необходимо помнить, что в настоящее время для кодировки русских букв используют пять различных кодовых таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой
Основным отображением кодирования символов является код ASCII - American Standard Code for Information Interchange- американский стандартный код обмена информацией, который представляет из себя таблицу 16 на 16, где символы закодированы в шестнадцатеричной системе счисления.
Кодирование графической информации.
Важным этапом кодирования графического изображения является разбиение его на дискретные элементы (дискретизация).
Основными способами представления графики для ее хранения и обработки с помощью компьютера являются растровые и векторные изображения
Векторное изображение представляет собой графический объект, состоящий из элементарных геометрических фигур (чаще всего отрезков и дуг). Положение этих элементарных отрезков определяется координатами точек и величиной радиуса. Для каждой линии указывается двоичные коды типа линии (сплошная, пунктирная, штрихпунктирная), толщины и цвета.
Растровое изображение представляет собой совокупность точек (пикселей), полученных в результате дискретизации изображения в соответствии с матричным принципом.
Матричный принцип кодирования графических изображений заключается в том, что изображение разбивается на заданное количество строк и столбцов. Затем каждый элемент полученной сетки кодируется по выбранному правилу.
Pixel (picture element - элемент рисунка) - минимальная единица изображения, цвет и яркость которой можно задать независимо от остального изображения.
В соответствии с матричным принципом строятся изображения, выводимые на принтер, отображаемые на экране дисплея, получаемые с помощью сканера.
Качество изображения будет тем выше, чем "плотнее" расположены пиксели, то есть чем больше разрешающая способность устройства, и чем точнее закодирован цвет каждого из них.
Для черно-белого изображения код цвета каждого пикселя задается одним битом.
Если рисунок цветной, то для каждой точки задается двоичный код ее цвета.
Поскольку и цвета кодируются в двоичном коде, то если, например, вы хотите использовать 16-цветный рисунок, то для кодирования каждого пикселя вам потребуется 4 бита (16=24), а если есть возможность использовать 16 бит (2 байта) для кодирования цвета одного пикселя, то вы можете передать тогда 216 = 65536 различных цветов. Использование трех байтов (24 битов) для кодирования цвета одной точки позволяет отразить 16777216 (или около 17 миллионов) различных оттенков цвета - так называемый режим “истинного цвета” (True Color). Заметим, что это используемые в настоящее время, но далеко не предельные возможности современных компьютеров.
Кодирование звуковой информации.
Из курса физики вам известно, что звук - это колебания воздуха. По своей природе звук является непрерывным сигналом. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), мы увидим плавно изменяющееся с течением времени напряжение.
Для компьютерной обработки аналоговый сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел, а для этого его необходимо дискретизировать и оцифровать.
Можно поступить следующим образом: измерять амплитуду сигнала через равные промежутки времени и записывать полученные числовые значения в память компьютера.

Билет № 3

В истории развития цивилизации произошло несколько информационных революций - преобразований общественных отношений из-за кардинальных изменений в сфере обработки информации. Следствием подобных преобразований являлось приобретение человеческим обществом нового качества.

Первая революция связана с изобретением письменности, что привело к гигантскому качественному и количественному скачку. Появилась возможность передачи знаний от поколения к поколению.

Вторая (середина XVI в.) вызвана изобретением книгопечатания, которое радикально изменило индустриальное общество, культуру, организацию деятельности.

Третья (конец XIX в.) обусловлена изобретением электричества, благодаря которому появились телеграф, телефон, радио, позволяющие оперативно передавать и накапливать информацию в любом объеме.

Четвертая (70-е гг. XX в.) связана с изобретением микропроцессорной технологии и появлением персонального компьютера. На микропроцессорах и интегральных схемах создаются компьютеры, компьютерные сети, системы передачи данных (информационные коммуникации). Этот период характеризуют три фундаментальные инновации:

Переход от механических и электрических средств преобразования информации к

электронным;

Миниатюризация всех узлов, устройств, приборов, машин;

Создание программно-управляемых устройств и процессов.

Сегодня мы переживаем пятую информационную революцию, связанную с формированием и развитием трансграничных глобальных информационно-телекоммуникационных сетей, охватывающих все страны и континенты, проникающих в каждый дом и воздействующих одновременно и на каждого человека в отдельности, и на огромные массы людей.

Наиболее яркий пример такого явления и результат пятой революции - Интернет. Суть этой революции заключается в интеграции в едином информационном пространстве по всему миру программно-технических средств, средств связи и телекоммуникаций, информационных запасов или запасов знаний как единой информационной телекоммуникационной инфраструктуры, в которой активно действуют юридические и физические лица, органы государственной власти и местного самоуправления. В итоге неимоверно возрастают скорости и объемы обрабатываемой информации, появляются новые уникальные возможности производства, передачи и распространения информации, поиска и получения информации, новые виды традиционной деятельности в этих сетях.

Информационное общество - концепция постиндустриального общества; новая историческая фаза развития цивилизации, в которой главными продуктами производства являются информация и знания. Отличительными чертами информационного общества являются:
- увеличение роли информации и знаний в жизни общества;
- возрастание доли информационных коммуникаций, продуктов и услуг в валовом внутреннем продукте;
- создание глобального информационного пространства, обеспечивающего (а) эффективное информационное взаимодействие людей, (б) их доступ к мировым информационным ресурсам и (в) удовлетворение их потребностей в информационных продуктах и услугах.

Билет № 11

Графом называется набор точек (эти точки называются вершинами), некоторые из которых объявляются смежными (или соседними). Считается, что смежные вершины соединены между собой ребрами (или дугами).

Таким образом, ребро определяется парой вершин. Два ребра, у которых есть общая вершина, также называются смежными (или соседними).

Граф называется ориентированным (или орграфом) ,если некоторые ребра имеют направление. Этоозначает, что в орграфе некоторая вершина может быть соединена с другой вершиной, а обратного соединения нет. Геометрически граф часто изображают точками плоскости, причем соседние вершины соединены дугами (для орграфа некоторые дуги имеют направление, что обычно отмечают стрелкой).

Помимо этого, в теории графов рассматриваются также мультиграфы – это такие графы, в которых могут быть петли (т. е. некоторая вершина соединена сама с собой ребром) или некоторые пары вершины могут быть соединены между собой несколькими ребрами.

Маршрут в графе – это последовательность соседних (смежных) вершин. Ясно, что можно определить маршрут и как последовательность смежных ребер (в этом случае ребра приобретают направление ). Заметим, что в маршруте могут повторяться вершины, но не ребра. Маршрут называется циклом , если в нем первая вершина совпадает с последней.

Путь в графе (иногда говорят простой путь) – это маршрут без повторения вершин (а значит, и ребер).

Контур – это цикл без повторения вершин, за исключением первой вершины, совпадающей с последней.

Последовательности вершин (рис. 1): 1–2–3–4–2–5 не простой путь, а маршрут; последовательности 1–2–3–4–7–5 и 1–2–5 – простые пути; 1–2–3–4–2–5–6–1 –это цикл (но не контур); 1–2–5–6–1 – это контур.

Если имеется некоторый маршрут из вершины t в вершину s, заданный в виде последовательности ребер, которые в этом случае приобрели направление, и если в этот маршрут входит ребро, соединяющее вершины (i , j ), то это ребро по отношению к вершине i называют иногда прямой дугой, а по отношению к вершине j – обратной дугой (или обратным ребром).

Граф называется связным , если любые две его вершины можно соединить маршрутом (или путем). На рис. 1 изображен связный граф.

Ребро, при удалении которого граф перестает быть связным, иногда называют мостом или перешейком .

Следующее определение имеет смысл только для графов или мультиграфов без петель (но не для орграфов).

Степень вершины – это число ребер, входящих в эту вершину. Вершина называется висячей , если ее степень равна единице.

Лемма 1 . Если степень всех вершин в графе больше или равна двум, то граф обязательно содержит контур.

Билет №13

Релейно-контактные схемы (их часто называют переключательными схемами) широко используются в технике автоматического управления.

Под переключательной схемой понимают схематическое изображение некоторого устройства, состоящее из следующих элементов:

1) переключателей , которыми могут быть механические устройства, электромагнитные реле, полупроводники и т.д.;

2) соединяющие их проводники ;

3) входы в схему и выходы из нее (клеммы, на которые подается электрическое напряжение). Они называются полюсами.

Простейшая схема содержит один переключатель Р и имеет один вход А и один выход В . Переключателю Р поставим в соответствии высказывание р , гласящее: - “Переключатель Р замкнут ”. Если р истинно, то импульс, поступающий на полюс А , может быть снят на полюсе В без потери напряжения, то есть схема пропускает ток. Если р ложно, то переключатель разомкнут и схема тока не проводит. Таким образом, если принять во внимание не смысл высказывания, а только его значение, то можно считать, что любому высказыванию может быть поставлена в соответсвие переключательная схема с двумя полюсами (двухполюсная схема).

Тогда РКС для данной формулы имеет вид:

Пример 2. Упростить РКС:

Решение. Составим по данной РКС формулу (функцию проводимости) и упростим ее:

(к последним двум слагаемым применили закон поглощения).

Тогда упрощенная схема выглядит так:

 

 

Это интересно: