→ Информационная модель: примеры и понятие. Графические Сколько существует трёхзначных чисел, все цифры которых различны

Информационная модель: примеры и понятие. Графические Сколько существует трёхзначных чисел, все цифры которых различны

Какие примеры информационных моделей можно привести для образовательных учреждений? Как педагоги могут использовать их в своей работе? Попробуем вместе найти ответы на поставленные вопросы.

Что такое модель

Что такое знаковые информационные модели? Примеры их используют в своей работе все учителя, которые владеют современными информационными технологиями. В общем виде модель - это разные способы представления анализируемой реальности.

Разновидности

Можно привести примеры информационных моделей материального и идеального вида.

Натурные варианты базируются на объективном примере, они существуют независимо от человека, его сознания. В настоящее время их подразделяют на физические и аналоговые варианты, которые основываются на явлениях, связанных с изучаемым предметом.

Идеальные модели связаны с мышлением человека, его восприятием, воображением. Среди них можно отметить интуитивные, которые не подходят ни под один вариант классификации.

Приводя примеры образной информационной модели, можно упомянуть одну из таких моделей. Рассмотрим подробнее их классификацию.

Текстовые идеальные модели

Вербальные модели применяют преподаватели гуманитарного цикла. Они помогают описывать последовательными предложениями определенную область, явление, объект, событие. Как будет выглядеть такая информационная модель урока? Пример возьмем из курса литературы. При изучении романа Л. Н. Толстого «Война и мир», учитель описывает образ Наташи Ростовой. Для этого он пользуется именно текстовой моделью. Ребята, слушая педагога, создают на основе его восприятия образа этой героини, свой образ героини Толстого.

Если учитель истории просит своих воспитанников: «Приведите примеры образной информационной модели событий, произошедших во время Куликовской битвы, основываясь на просмотренных фрагментах», ребята создают свой образ того сражения. Они передают его в виде связанных в рассказ предложений.

Можно привести примеры информационных моделей вербального вида и из курса физики. При изучении темы «Давление твердых тел» в седьмом классе, учитель рассказывает детям, как сложно передвигаться по рыхлому снегу без лыж. Затем школьникам предлагается объяснить причину подобного явления, выявить параметры, от которых зависит изучаемая физическая величина. Образ, который возникает в сознание ребят после рассказа педагога, помогает им ответить на поставленный вопрос.

В качестве примеров подобной модели можно отметить учебник, правила дорожного движения.

Математические модели

Они считаются широким классом знаковых моделей. Основываются математические модели на использовании соотношений, сравнений, иных методах, применяемых в данной науке. Приводя примеры информационных моделей, основанных на математических методах, можно упомянуть решение квадратных уравнений, составление пропорций. Все разделы геометрии, предполагающие вывод и доказательство теорем, также связаны с построением математической модели. Не обходится без них и такой школьный предмет как экономика.

Информационные модели

Они считаются классом знаковых моделей, которые описывают любые информационные процессы: появление, передачу, изменение, применение информации в разных системах. Примеры табличных информационных моделей в школе можно найти в курсе географии 10 класса. При изучении экономической географии табличная модель помогает наглядно видеть основные характеристики страны, использовать материал для составления полного рассказа.

Кроме того примеры табличных информационных моделей можно найти в любом школьном курсе. В химии это таблица растворимости соединений, а также периодическая система Менделеева. В физике без таблиц учителю сложно объяснить основные термины, изучаемые в теме «Электричество». В истории с их помощью осуществляется систематизация знаний, ребята вписывают в один столбик важные исторические даты, а в другом - описывают события, которые им соответствуют.

Взаимосвязь моделей

Между информационными, математическими, вербальными моделями существует условная грань. Все 3 примера информационных моделей встречаются в школьных дисциплинах. Так, для математики, физики, информатики, самыми востребованными считают математические и информационные варианты. Но без вербальной модели ребята не смогут объяснить явления, алгоритмы, уравнения и неравенства.

Особенности моделирования

Прежде чем рассматривать примеры графических информационных моделей, выясним особенности моделирования. Модель представляет собой объект, созданный искусственно. Это необходимо для упрощения представления о настоящем объекте либо явлении. Модель в полной мере отражает все особенности самого исходного процесса. Если дано задание: «Приведите пример информационной модели», необходимо понимать суть процесса.

Речь идет о построении модели, которая предназначена для изучения информационных явлений, процессов. В информатике в качестве такого предмета можно рассматривать программирование. Используя определенный математический язык программирования, можно представить текстовый материал в графическом виде.

Моделирование предполагает построение той модели, которая предназначена для исследования и изучения исходного объекта, явления, процесса. Созданная копия лишь наделена теми качествами и свойствами, которые характерны для исходного предмета, но допускает некоторые отклонения от идеала.

Деятельностный подход

Полноценные модели можно получать при использовании системного подхода. Это особенно актуально в рамках образовательных учреждений. Преобразования, которые коснулись школ в последние годы, позволили установить логическую связь между отдельными дисциплинами.

Такой деятельностный вариант обучения способствует формированию гармонически развитой личности, понимающей единство живого мира, взаимосвязь отдельных процессов и явлений.

Если учителя просят: «Приведите пример информационной модели», он смело может выбирать любой учебный предмет. Нет такой дисциплины, в которой бы не применялись таблицы, графики, диаграммы, презентации.

Особенности современной школы

Новые стандарты, которые были введены в российские школы, предполагают рассмотрение одного явления с разных точек зрения. Например, из курса физики ребята узнают о том, что электроны необходимы для протекания в металлах электрического тока. Они получают информацию о заряде этой отрицательной частицы, определении их количества у разных металлов. На уроках химии школьникам рассказывают о вероятности размещения электронов на энергетических уровнях.

При изучении темы «Окислительно-восстановительные реакции» у школьников появляется информация о том, что происходит с этими отрицательными частицами при химическом взаимодействии. Несмотря на то что информация предоставляется с разных позиций, речь идет об одном объекте - электронах. Подобный системный подход позволяет формировать в сознании школьников полное представление о строении вещества, его превращениях.

В приведенном примере изучаемый объект рассматривается как полная система, составная часть единого целого (вещества). В зависимости от учебной дисциплины используют определенные характеристики, дополнения. В случае системного подхода на первое место выходят не причинные пояснения существования объекта, а необходимость включения с него иных составных частей.

Особое значение формирование универсальных моделей приобретает при экспериментальной деятельности. Используя персональный компьютер, можно провести вычисления параметров, которые будут связаны с анализируемым объектом.

Такое моделирование важно для научного познания природных явлений. В школьном курсе информатики такие действия именуют вычислительным экспериментом, который базируется на трех важных понятиях: модели, алгоритме, программе.

Использование в рамках школы персонального компьютера возможно по трем основным вариантам:

  • проведение с помощью ПК прямых расчетов;
  • создание базы данных, превращение ее в программу либо определенный алгоритм;
  • поддержание между компьютером и школьником интерфейса.

Признаки моделей

Среди самых распространенных признаков, по которым можно провести классификацию всех моделей, выделим: цель применения, сферу знаний, временной фактор, вариант представления.

В зависимости от того, какая цель поставлена перед моделью, выделяют опытные, учебные, игровые, имитационные, научно-технические варианты моделей. Так, например, на начальной ступени школьного образования, наиболее применимыми и значимыми игровые технологии, позволяющие ребятам ощутить себя в роли учителя, врача, полицейского. Игровые модели у детей семи-восьми лет хорошо сформированы, поскольку в дошкольных образовательных учреждениях они применяются в качестве обязательного элемента при формировании личностных качеств ребенка.

Разновидности моделей

В зависимости от области знаний, для которых составляется модель, в настоящее время выделяют экономические, биологические, социологические, химические виды. К примеру, для естественнонаучного цикла важно сформировать такую модель, которая бы позволяла объяснять явления, происходящие в живой и неживой природе. В социологии акцент делают на процессы, происходящие в социуме.

По временному фактору выделяют статические и динамические варианты моделей. Статический вариант характеризует параметры и строение объекта, позволяет описывать выбранное явление (объект) в конкретный промежуток времени, помогает получать о нем достоверную и своевременную информацию.

У любой модели существует конкретная форма, вид, вариант представления, описание. В школе предполагается рассмотрение в большей степени материальных и нематериальных моделей, в зависимости от специфики учебной дисциплины.

Материальные модели предполагают реальное воплощение, они в полной мере повторяют внутреннее либо внешнее строение самого объекта. Например, в географии в качестве такой уменьшенной модели выступает макет земного шара (глобус), на котором нанесены все моря и океаны, материки и острова. Данные модели непосредственным образом связаны с исследовательским подходом к обучению современных школьников. Они необходимы при преподавании химии, физики, биологии, астрономии, географии.

Нематериальное моделирование предполагает использование теоретического способа познания.

Заключение

Любая информационная модель представляет собой совокупность информации об явлении, объекте, процессе. С ее помощью можно охарактеризовать любой процесс, происходящий в живой и неживой природе. Разнообразные графики, карты, таблицы, диаграммы, которые активно применяются педагогами на всех ступенях обучения, дают свой положительный результат.

Интуитивное (мысленное) моделирование способствует созданию первого впечатления о процессе, происходящем в химии или биологии. Благодаря совокупности всех вариантов информационных моделей, у подрастающего поколения нашей страны формируется адекватная оценка единства живого и неживого мира. Выпускники школ могут самостоятельно выстраивать любые модели, использовать их для изучения, анализа, оценки событий и явлений.

ЦЕЛИ:

  • ОБЩЕОБРАЗОВАТЕЛЬНАЯ:
  • научить строить модели изучаемых объектов с использованием диаграмм;
  • освоить способы визуализации числовых данных;
  • закрепление понятий и навыков работы с электронной таблицей Microsoft Excel;
  • обобщение и закрепление материала по теме: “Основы учения о клетке”

РАЗВИВАЮЩАЯ:

  • развивать навыки формализации при решении информационных задач с помощью средств электронного процессора;
  • развивать способность анализировать и обобщать изученный материал.

ВОСПИТЫВАЮЩАЯ:

  • восприятие компьютера как инструмента обработки информационных объектов;
  • сформировать у учащихся представление о вредном воздействии факторов внешней среды на жизнедеятельность организма.

ОБОРУДОВАНИЕ:

Таблицы, муляжи, карточки с заданиями, компьютеры, программное обеспечение - Еxcel, учебная презентация “Клетка” <Приложение1> , презентация “Модель” < Приложение2> , географическая карта Европы, модель головного мозга птицы, модель скелета человека, микроскоп.

ХОД УРОКА

I. ОРГАНИЗАЦИЯ КЛАССА

II. ВСТУПИТЕЛЬНОЕ СЛОВО (учитель информатики)

В настоящее время наиболее яркие открытия происходят на стыке наук. Возникают новые науки: биоинженерия, бионика, биоинформатика. Это яркий пример интеграции наук. Сегодня на уроке мы с вами совместим материал информатики и биологии по темам “Модели”, “Построение диаграмм и графиков в ЭТ Excel”, “Основы учения о клетке” с использованием компьютерных технологий.

III. АКТУАЛИЗАЦИЯ ЗНАНИЙ

ИНФОРМАТИКА

Ответ уч-ся по теме “Моделирование”

Демонстрация презентации “Модель”

Вопросы по теме “Модели”:

Что такое модель?

Какие свойства реальных объектов воспроизводят следующие
модели:

  • муляж яблока;
  • чучело птицы;
  • скелет человека в кабинете биологии.

Что такое информационная модель?

Поясните разницу между технической моделью самолета и информационной моделью самолета - чертежом.

Приведите различные примеры графических информационных моделей.

Какая форма графической модели (карта, схема, чертеж, график) применима для отображения процессов?

IV. Работа в тетради

Учитель демонстрирует различные модели по биологии.

Записать в тетради в 1-й столбик материальные модели, во 2-й – информационные,

во 2-м столбике пометить графические модели.

V. Объяснение нового материала (“Компьютерное моделирование”)

Моделирование – это метод познания, состоящий в создании и исследовании моделей.

Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность, и исследование этой модели. Многовековой опыт развития науки доказал на практике плодотворность такого подхода.

В моделировании есть два разных пути. Модель может быть похожей копией объекта, выполненной из другого материала, в другом масштабе, с отсутствием ряда деталей. Например, это игрушечный кораблик, самолетик, домик из кубиков и множество других натурных моделей. Модель может, однако, отображать реальность более абстрактно - словесным описанием в свободной форме, описанием, формализованным по каким-то правилам, математическими соотношениями и т. д.

Цели моделирования:

  • модель нужна для того, чтобы понять, как устроен конкретный объект (или как проистекает процесс), какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (понимание);
  • модель нужна для того, чтобы научиться управлять объектом (или процессом) и определять наилучшие способы управления при заданных целях и критериях (управление);
  • модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).

Эти цели могут, как сочетаться в одной модели, так и достигать порознь.

На протяжении своей истории человечество использовало различные способы и инструменты для создания информационных моделей. Эти способы постоянно совершенствовались. Так, первые информационные модели создавались в форме наскальных рисунков, в настоящее же время информационные модели обычно строятся и исследуются с использованием современных компьютерных технологий.

Основные этапы разработки и исследования моделей на компьютере:

Использование компьютера для исследования информационных моделей различных объектов и систем, позволяет изучить их изменения, в зависимости от значения тех или иных параметров. Процесс разработки моделей и их исследования на компьютере, можно разделить на несколько основных этапов.

На первом этапе исследования объекта или процесса, обычно строится описательная информационная модель. Такая модель выделяет существенные, с точки зрения целей

проводимого исследования, параметры объекта, а несущественными параметрами пренебрегает.

На втором этапе создается формализованная модель, то есть описательная информационная модель записывается с помощью какого-либо формального языка. В такой модели с помощью формул, уравнений, неравенств и пр. фиксируются формальные соотношения между начальными и конечными значениями свойств объектов, а также накладываются ограничения на допустимые значения этих свойств.

Однако далеко не всегда удается найти формулы, явно выражающие искомые величины через исходные данные. В таких случаях используются приближенные математические методы, позволяющие получать результаты с заданной точностью.

На третьем этапе необходимо формализованную информационную модель преобразовать в компьютерную модель, то есть, выразить ее на понятном для компьютера языке. Существуют два принципиально различных пути построения компьютерной модели:

  • построение алгоритма решения задачи и его кодирование на одном из языков программирования;
  • построение компьютерной модели с использованием
    одного из приложений (электронных таблиц, СУБД и пр.).

В процессе создания компьютерной модели полезно разработать удобный графический интерфейс, который позволит визуализировать формальную модель, а также реализовать интерактивный диалог человека с компьютером на этапе исследования модели.

Четвертый этап исследования информационной модели состоит в проведении компьютерного эксперимента. Если компьютерная модель существует в виде программы на одном из языков программирования, ее нужно запустить на выполнение и получить результаты.

Если компьютерная модель исследуется в приложении, например в электронных таблицах, можно провести сортировку или поиск данных, построить диаграмму или график и так далее.

Пятый этап состоит в анализе полученных результатов и корректировке исследуемой модели. В случае различия результатов, полученных при исследовании информационной модели, с измеряемыми параметрами реальных объектов можно сделать вывод, что на предыдущих этапах построения модели были допущены ошибки или неточности. Например, при построении описательной качественной модели.

Прежде чем строить информационную модель, производится системный анализ объекта моделирования.

Задача системного анализа - выделить существенные части, свойства, связи моделируемой системы, определить ее структуру.

БИОЛОГИЯ

VI. Вступительное слово учителю биологии

Биология изучает многообразие форм жизни. На Земле существует огромное многообразие организмов. Различаясь между собой рядом существенных признаков, они имеют общее свойство - клеточное строение.

VII. Индивидуальное задание по карточкам (у доски 4 человека)

КАРТОЧКА № 1

Каково строение клетки?

Написать на доске, из каких основных, главных частей состоит клетка.

КАРТОЧКА № 2

Написать на доске органоиды клетки – особые клеточные органы, расположенные в цитоплазме, и в которых протекают основные жизненные процессы.

КАРТОЧКА № 3

Используя магнитное пособие, собрать модель животной клетки.

КАРТОЧКА № 4

Для чего используется в электронных таблицах экспоненциальный (научный формат) представления чисел?

Представить числа в научном формате.

VIII. Актуализация знаний (беседа с классом)

Показ презентации “Клетка”

ВОПРОСЫ И ЗАДАНИЯ ПО ТЕМЕ “КЛЕТКА”:

  1. Какое строение имеет животная и растительная клетка?
  2. Чем отличается животная клетка от растительной?
  3. В чем сходство в строении клеток различных организмов?
  4. Написать на доске, из каких основных, главных частей состоит клетка (обратить внимание на грамотность написания слов).
  5. Функция, значение, роль: клеточной мембраны, цитоплазмы, ядра.
  6. Почему цитоплазму называют внутренней средой клетки?
  7. Перечислить органоиды клетки (их еще называют особыми клеточными органами).
  8. Какие клетки не имеют ядра? Как их еще называют?
  9. Как называют организмы, в клетках которых есть ядро?
  10. Что изучает цитология?
  11. История возникновения цитологии.
  12. Что называется тканью?
  13. Сколько химических элементов в периодической системе Менделеева?
  14. Сколько химических элементов содержится в животной клетке?
  15. Макроэлементы - это…
  16. В чем заключается значение углерода?
  17. Написать химические знаки макроэлементов.
  18. В чем значение макроэлементов?
  19. Микроэлементы – это…
  20. Написать химические знаки микроэлементов.
  21. В чем значение микроэлементов?
  22. Какие болезни возникают при недостатке микроэлементов?
  23. Какие химические соединения находятся в клетке?

IX. Проверка заданий у доски

ИНФОРМАТИКА

X. Компьютерное моделирование (учитель информатики)

Наглядным способом представления информационных моделей являются графические изображения: карты, чертежи, схемы, графики.

Электронные таблицы (так же, как и базы данных) можно рассматривать как информационные модели реальных объектов или процессов.

Способом наглядного представления числовых данных является диаграмма.

Тип диаграммы устанавливается в зависимости от представленных в диаграмме данных и необходимости получения результирующих описаний числовых зависимостей.

Диаграмма состоит из нескольких элементов, которые можно последовательно и независимо друг от друга отредактировать, выделяя нужный объект двойным щелчком мыши.

На материале биологии по теме “клетка” построим графическую информационную модель

Учащиеся работают в парах (один выполняет роль консультанта и отвечает на вопросы по теме “электронные таблицы”, другой - выполняет задание на компьютере по построению модели)

Задание№1

Построить информационную графическую модель (столбчатую диаграмму), отражающую содержание химических элементов клетки, средствами электронной таблицы Microsoft Excel.

Элементы Количество (в %)
Кислород 70
Углерод 15
Водород 9
Азот 2,2
Кальций 2
Фосфор 1
Калий 0,4
Сера 0,2
Хлор 0,1
Магний 0,03
Натрий 0,03
Микроэлементы 0,025
Железо 0,015

Вопросы по теме “Электронные таблицы”:

  1. Что такое табличный процессор?
  2. Какими функциональными возможностями обладает электронные таблицы?
  3. Что в электронной таблице называют ячейкой?
  4. Как именуются ячейки таблицы?
  5. Какая информация может храниться в ячейках?
  6. Как ввести формулу в ячейку?
  7. В чем разница между режимом отображения формул и режимом отображения значений?
  8. Что происходит в электронной таблице в результате замены числа в ячейке на новое значение?
  9. Что необходимо сделать для выделения всей строки?
  10. Что необходимо сделать для выделения всего столбца?
  11. В каких форматах электронные таблицы могут представлять числовые данные?
  12. Для чего используются диаграммы?
  13. Какие типы диаграмм вам знакомы?
  14. Что показывает легенда?
  15. Когда применяется научный или экспоненциальный формат чисел?
  16. Какие встроенные функции есть в электронных таблицах?

XI. Региональный компонент

XII. Физминутка

БИОЛОГИЯ

XIII. Системный анализ

  1. Какое значение воды?
  2. Какое значение минеральных веществ?
  3. Какое значение органических веществ: белков, углеводов, жиров (липидов), нуклеиновых кислот?
  4. Почему клетка считается сложнейшей химической лабораторией?
  5. Какие жизненно важные процессы происходят в клетках?

ИНФОРМАТИКА

XIV. Компьютерное моделирование

Задание№2

Построить информационную графическую модель (круговую диаграмму), отражающую содержание в клетке химических соединений, средствами электронной таблицы Microsoft Excel.

XV. Влияние факторов внешней среды на жизнедеятельность организма

(алкоголь, никатин, наркотики, загрязнения окружающей среды)

Беседа с учащимися.

XVI. Подведение итогов:

Учитель информатики:

Учитель биологии:

Домашнее задание:

ИНФОРМАТИКА

Выписать в тетрадь слова изученной темы, трудные для запоминания (экспоненциальный, модель, электронная таблица, компьютерный эксперимент).

Опережающее задание:

  • “Электронные таблицы и математическое моделирование”
  • Использование электронных таблиц в научных целях (для прогнозирования)
  • Сообщения уч-ся по данной теме из других источников.

БИОЛОГИЯ

Опираясь на параграф из учебника “Строение клетки”, доказать, что клетка-биосистема.

модели

Разнообразие графических моделей достаточно велико. Рассмотрим некоторые из них.

Графы

Наглядным средством отображения состава и структуры систем являются графы. Рассмотрим пример. Имеется словесное описание некоторой местности.

Район состоит из пяти поселков: Дедкино, Репкино, Бабкино, Кошкино и Мышкино. Автомобильные дороги проложены между: Дедкино и Бабкино, Дедкино и Кошкино, Бабкино и Мышкино, Бабкино и Кошкино, Кошкино и Репкино.

По такому описанию довольно трудно представить себе эту местность. Гораздо легче та же информация воспринимается с помощью схемы. Это не карта местности. Здесь не выдержаны направления по сторонам света, не соблюден масштаб. На этой схеме отражен лишь факт существования пяти поселков и дорожной связи между ними. Такая схема, отображающая элементный состав системы и структуру связей, называется графом.

Составными частями графа являются вершины и ребра. На рисунке вершины отображены кружками – это элементы системы, а ребра изображены линиями – это связи (отношения) между элементами. Глядя на этот граф, легко понять структуру дорожной системы в данной местности.

Построенный граф позволяет, например, ответить на вопрос: через какие поселки надо проехать, чтобы добраться из Репкино в Мышкино? Видно, что есть два возможных пути: 1) Р - К - Б - М и 2) Р- К - Д - Б - М. Можно ли отсюда сделать вывод, что 1-й путь короче 2) –го? Нет, нельзя. Данный граф не содержит количественных характеристик. Это не карта, где соблюдается масштаб и есть возможность измерить расстояние.

Граф, приведенный на следующем рисунке, содержит количественные характеристики. Числа около ребер обозначают длины дорог в километрах. Это пример взвешенного графа. Взвешенный граф может содержать количественные характеристики не только связей, но и вершин. Например, в вершинах может быть указано население каждого поселка. Согласно данным взвешенного графа, оказывается, что второй путь длиннее первого.
Подобные графы еще называют сетью. Для сети характерна возможность множества различных путей перемещения по ребрам между некоторыми парами вершин. Для сетей также характерно наличие замкнутых путей, которые называются циклами. В данном случае имеется цикл: К-Д-Б-К

На рассмотренных схемах каждое ребро обозначает наличие дорожной связи между двумя пунктами. Но дорожная связь действует одинаково в обе стороны: если по дороге можно проехать от Б к М, то по ней же можно проехать и от М к Б (предполагаем, что действует двустороннее движение). Такие графы являются неориентированными, а их связи называются симметричными.

Качественно иной пример графа изображен на следующем рисунке.

Этот пример относится к медицине. Известно, что у разных людей кровь отличается по группе. Существуют четыре группы крови. Оказывается, что при переливании крови от одного человека к другому не все группы совместимы. Граф показывает возможные варианты переливания крови. Группы крови – это вершины графа с соответствующими номерами, а стрелки указывают на возможность переливания одной группы крови человеку с другой группой крови. Например, из этого графа видно, что кровь первой группы можно переливать любому человеку, а человек с первой группой крови воспринимает только кровь своей группы. Видно также, что человеку с IV группой крови можно переливать любую, но его собственную кровь можно переливать только в ту же группу.

Связи между вершинами данного графа несимметричны и поэтому изображаются направленными линиями со стрелками. Такие линии принято называть дугами (в отличие от ребер неориентированных графов). Граф с такими свойствами называется ориентированным. Линия, выходящая и входящая в одну и ту же вершину, называется петлей. В данном примере присутствуют четыре петли.

Дерево – граф иерархической структуры

Весьма распространенным типом систем являются системы с иерархической структурой. Иерархическая структура естественным образом возникает, когда объекты или некоторые их свойства находятся в отношении соподчинения (вложения, наследования). Как правило иерархическую структуру имеют системы административного управления, между элементами которых установлены отношения подчиненности (директор завода – начальники цехов – начальники участков – бригадиры - рабочие). Иерархическую структуру имеют также системы, между элементами которых существуют отношения вхождения одних в другие.

Граф иерархической структуры называется деревом. Основным свойством дерева является то, что между любыми двумя его вершинами существует единственный путь. Деревья не содержат циклов и петель.

Дерево административной структуры РФ

Посмотрите на граф, отражающий иерархическую административную структуру нашего государства: РФ делится на семь административных округов; округа делятся на регионы (области и национальные республики), в состав которых входят города и другие населенные пункты. Такой граф называется деревом.

У дерева существует одна главная вершина, которая называется корнем дерева. Эта вершина изображается вверху; от нее идут ветви дерева. От корня начинается отсчет уровней дерева. Вершины, непосредственно связанные с корнем, образуют первый уровень. От них идут связи к вершинам второго уровня и т.д. Каждая вершина дерева (кроме корня) имеет одну исходную вершину на предыдущем уровне и может иметь множество порожденных вершин на следующем уровне. Такой принцип связи называется “один ко многим”. Вершины, которые не имеют порожденных, называются листьями (на нашем графе это вершины, обозначающие города).

Графическое моделирование результатов научных исследований.

Общую цель научной графики можно сформулировать так: сделать невидимое и абстрактное “видимым”. Последнее слово заключено в кавычки, т.к. эта видимость часто весьма условна. Можно увидеть распределение температуры внутри неоднородно нагретого тела сложной формы без введения в него сотен микродатчиков, т.е. по существу его разрушения? – Да, можно, если есть соответствующая математическая модель и, что очень важно, договоренность о восприятии определенных условностей на рисунке. Можно увидеть распределение металлических руд под землей без раскопок? Строение поверхности чужой планеты по результатам радиолокации? Да, можно, с помощью компьютерной графики и предшествующей ей математической обработки.

Более того, можно “увидеть” и то, что, строго говоря, вообще плохо соответствует слову “видеть”. Так, возникшая на стыке химии и физики наука – квантовая химия – дает нам возможность “увидеть” строение молекулы. Эти изображения – верх абстракции и системы условностей, так как в атомном мире обычные наши понятия о частицах (ядрах, электронах и т.п.) принципиально неприменимы. Однако многоцветное “изображение” молекулы на экране компьютера для тех, кто понимает всю меру его условности, приносит большую пользу, чем тысячи чисел, являющихся результатами вычислений.

Изолинии.

Стандартный прием обработки результатов вычислительного эксперимента – построение линий (поверхностей), называемых изолиниями (изоповерхностями), вдоль которых некоторая функция имеет постоянное значение. Это очень распространенный прием визуализации характеристик некоторого скалярного поля в приближении сплошной среды: изотермы – линии равной температуры; изобары – линии равного давления; изолинии численности экологической популяции на местности и т.д.

Условные цвета, условное контрастирование

Это прием современной научной графики – условная раскраска. Она находит широчайшее применение в самых разных приложениях науки и представляет собой набор приемов по максимально удобной визуализации результатов компьютерного моделирования.

В различных исследованиях температурных полей встает проблема наглядного представления результатов, например, температур на метеорологических картах. Для этого можно рисовать изотермы на фоне карты местности. Но можно добиться еще большей наглядности, учитывая, что большинству людей свойственно воспринимать красный цвет как “горячий”, синий – как “холодный”. Переход по спектру от красного к синему отражает промежуточные значения температур. При поиске полезных ископаемых методами аэросъемки с самолетов или космических спутников компьютеры строят условные цветовые изображения распределений плотности под поверхностью Земли и т.д.

Изображения в условных цветах и контрастах – мощнейший прием научной графики.

  • Не следует путать изучение графического информационного моделирования с изучением технологий обработки графической информации
  • Построение простых графических моделей в форме графов и иерархических структур уместно в базовом курсе информатики.
  • Реализация моделей научной графики через программирование - материал повышенной трудности, практическая отработка которого уместна в профильном курсе информатики.

Задание :

    1. Составить схему ключевых понятий;
  • Подобрать практические задания с решениями для базового и профильного курсов информатики.

Когда человек слышит слова «модель» и «моделирование», перед его мысленным взором обычно пробегают картинки из его детства: уменьшенные копии автомобилей и самолетов, глобус, манекен, макеты зданий... Эти и многие другие вещи часто отражают какие-то общие свойства или функции настоящих предметов или объектов, только в более упрощенном виде. Используя такие модели, можно проще объяснить особенности оригинала. Информационная модель, примеры которой наглядно и понятно объясняют многие сложные для понимания процессы, также подчиняется основным требованиям моделирования.

Цели

Вышесказанное может привести нас к такому выводу: модели, являясь подобием реальных предметов или процессов, не должны отображать все свойства оригиналов, а только те характеристики, которые в определенной ситуации более востребованы для их применения. Нет необходимости отображать все многообразие свойств объекта - это может привести к усложнению модели и неудобству ее использования. Поэтому очень важно понимать, с какой целью была создана модель, какие ее параметры должны быть отражены в данном конкретном случае. При моделировании необходимо строго придерживаться такой логической цепочки: «объект - цель - модель».

Информационная модель. Примеры. Системный анализ

При формировании цели моделирования встает вопрос правильности и полноты создания списка качеств и характеристик будущей модели. Описание объекта моделирования часто называют термином "информационная модель". Примеры ее использования можно видеть в различных формах: графических, словесных, табличных, математических и многих других. Чем точнее информационная модель, тем более качественно и полно она отображает совокупность свойств оригинального объекта. Поэтому необходимо выделить только самые необходимые параметры для моделирования и установить связи между ними. Этот процесс называется системным анализом.

Форма представления

Одной из характеристик информационной модели является форма ее представления, которая тесно связана с целью создания образа. Если одним из требований к проекту является его наглядность, то используется графическая информационная модель. Примеры таковой найти не сложно: электрические схемы, карты местности, различные графики и чертежи. Причем одни и те же данные, например, график изменения температуры в течение месяца, можно представить в различных формах, например, в табличной или текстовой.

Использование моделирования

Когда информационная модель сформирована, ее параметры можно использовать для изучения реального объекта, прогнозирования его поведения в различных условиях, проведения расчетов. Часто задействуют смешанные информационные модели. Примеры использования такой формы моделирования часто можно встретить в строительстве, когда формируются и отражаются отдельные характеристики сложного объекта, например, здания, в виде чертежей, математических расчетов прочности и допустимых нагрузок.

Еще одним ярким примером смешанной информационной модели служит географическая карта с ее топографическими символами, надписями, таблицами. Такая модель может также представляться в виде графиков, диаграмм, таблиц, схем. Последние условно разделяются на карты, блок-схемы и графы.

Классификация

Для удобства работы с информационными моделями их условно делят на несколько больших блоков: по области использования, по фактору времени, по отрасли знаний и по форме представления. Также их еще можно разделить по типу построения (табличные, иерархические и сетевые), по форме представления данных (знаковые и образно-знаковые) и по объекту (описание свойств объекта или процесса).

Типичные примеры образной информационной модели

Формы моделей этого типа отличаются графическим изображением объекта, зафиксированным на каком-либо носителе информации (пленке, бумаге, доске).

К такому типу моделей можно причислить различные фотографии, рисунки, графики. Примеры образной информационной модели часто встречаются в учебных заведениях, где на плакатах предоставляется много информации в графическом виде. Еще один вариант ее использования - иллюстрации в любом школьном учебнике, такие как схема построения войск на битве под Сталинградом. Примеры образной информационной модели можно увидеть и в научных организациях, где производится разделение объектов по их внешнему признаку.

Классификация моделей по времени

Модели могут быть статическими и динамическими. Характеристики объекта в определенный срез времени описывают статические информационные модели. Примеры их использования можно встретить при постройке дома, когда рассматриваются его прочность и устойчивость к статической нагрузке. Или в стоматологии, где описывается состояние полости рта пациента во время текущего приема: количество пломб, наличие дефектов и т. д.

Если рассматривать динамику изменения состояния пациента за несколько приемов или в течение нескольких лет, то при описании тех же характеристик будет использоваться динамическая модель.

Примеры динамических информационных моделей встречаются при работе с факторами или характеристиками, которые изменяются во времени. Среди них изменения температур, сейсмические колебания и пр.

Вербальные модели

К информационным относят и вербальные модели, которые представляются в разговорной или мысленной форме. Они еще имеют название "словесные информационные модели". Примеры такого моделирования можно наблюдать при управлении автомобилем: ситуация на дороге, показания светофоров, скорость соседних автомобилей и т. д. анализируются человеком. При этом вырабатывается определенная модель поведения. Если текущая ситуация смоделирована правильно, то данный отрезок пути будет безопасным. Если нет, велика вероятность аварии.

Также к вербальным моделям относят рифму, промелькнувшую в мозгу поэта, или пока еще не нанесенный на холст образ пейзажа перед мысленным взором художника.

К вербальному типу относят и описательную информационную модель, которая представляет собой письменное или устное описание объекта средствами языка. Пример описательной информационной модели: проза в художественных книгах, описания в художественной литературе, текстовое описание событий и объектов.

Знаковые модели

Если характеристики объекта предстают в виде специальных знаков, отображены средствами формального языка, то они являют собой знаковые информационные модели. Примеры оных окружают нас со всех сторон: графики, схемы, тексты и т. д.
Знаковые и вербальные модели тесно взаимосвязаны между собой: мысленный образ можно облечь в знаковую форму, а знаковая модель формирует определенный мысленный образ. Например, прочитав описание какого-либо явления, человек создает себе его модель, и и, встретив это явление в жизни, может его узнать по сформированной модели.

Знаковые информационные модели можно разделить на геометрические, словесные, математические, структурные, логические, специальные.

Математические модели

Как вариант знаковой можно рассмотреть математическую информационную модель. Ее особенность в том, что характеристики, параметры или процессы представлены математическими формулами. Также этот вид описывает соотношения между количественными характеристиками объектов. Например, зная массу тела, мы можем вычислить скорость его свободного падения в определенный момент времени. При этом информационные объекты обычно представлены в форме математических.

Математические модели можно разделить на множество типов: статические, динамические, дискретные, непрерывные, имитационные, вероятностные, логические, множественные, алгоритмические, игровые и т. д.

Табличные модели

Модель, объекты или свойства которой представляются в виде списка, а их значения располагаются в ячейках прямоугольной таблицы, называют табличной. Это один из самых часто встречающихся типов передачи информации. При помощи таблиц есть возможность сформировать статические и динамические информационные модели в различных прикладных областях. В жизни мы используем это, например, когда создаем расписание транспорта, программу телепередач, дневник погоды и т. д.

Виды табличных информационных моделей

Таблицы бывают трех видов: двоичные, «объект-свойство», «объект-объект». Для того чтобы привести примеры табличных информационных моделей, нужно разобрать их структуру.

В таблицах типа «объект-объект» в первой строке и в первом столбце перечисляются объекты. В остальных ячейках отражается взаимоотношение между ними. Таблица, в столбцах и строках которой находятся названия городов, а информационное наполнение показывает наличие качественного характера связи между ними (наличие прямой дороги), может служить образцом типа «объект-объект».

В таблицах типа «объект-свойство» в каждой строке размещаются параметры одного объекта или события, а в столбцах содержится информация об их характеристиках или свойствах. Примером структуры такого типа может быть информация об изменении состояния погоды в разные дни.

Иерархические и сетевые информационные модели

Табличные модели удобны для небольших систем объектов. При создании сложной системы модель может стать слишком большой и неудобной для использования именно из-за того, что она представлена в виде прямоугольной таблицы. Например, если создать в табличном виде схему линий метрополитена с объектами-станциями и указанием, есть ли между ними переход или пересечение, то такая таблица будет иметь огромную избыточность - более десяти тысяч значений, и пользоваться ей окажется очень сложно.

Иерархические системы обычно представлены в графическом виде, в форме графов - связей между объектами, распределенными по уровням. Все элементы верхних уровней состоят из элементов нижних, а элементы нижнего уровня принадлежат только одному элементу более высокого уровня. Частный пример модели такого типа - генеалогическое древо.

Сетевые модели более компактны, так как отражают наиболее важные связи между объектами. Чаще всего они представлены в наглядном графическом виде. Примером такой сетевой модели является схема линий метрополитена.

Использование информационных моделей в процессе моделирования на компьютере

Производить моделирование удобно с использованием вычислительной техники. Сам процесс можно условно разбить на несколько этапов.

Вначале производится построение информационной модели: определение проводимого исследования, выделение важных параметров объекта, соответствующих этой цели, удаление несущественных параметров.

На втором этапе происходит создание формализованной модели: производится выражение описательной информационной модели средствами формального языка, фиксируются отношения между величинами и ставятся необходимые ограничения на их изменение.

На следующем этапе осуществляется преобразование формализованной модели в компьютерную, то есть составление алгоритма, проведение расчетов, написание программ или использование специализированного ПО.

После проверки правильности создания модели и ее соответствия назначенной цели начинается непосредственное использование. При возникновении необходимости проводится коррекция.

Применение вычислительной техники заметно упрощает создание информационных моделей, их изменение, исправление. Имеется возможность поместить смоделированный объект в любое окружение и проверить его поведение или трансформацию характеристик в различных условиях, не подвергая его при этом воздействию данных факторов.

Проверка домашнего задания Приведите различные примеры графических информационных моделей. Приведите различные примеры графических информационных моделей. Графическая модель вашей квартиры. Что это: карта, схема, чертеж? Графическая модель вашей квартиры. Что это: карта, схема, чертеж? Какая форма графической модели (карта, схема, чертеж, график) применима для отображения процессов? Приведите примеры. Какая форма графической модели (карта, схема, чертеж, график) применима для отображения процессов? Приведите примеры.


Динамическое моделирование






Содержательная постановка задачи В процессе тренировок теннисистов используются автоматы по бросанию мячика в определенное место площадки. Необходимо задать автомату необходимую скорость и угол бросания мячика для попадания в площадку определенного размера, находящуюся на известном расстоянии.




Качественная описательная модель мячик мал по сравнению с Землей, поэтому его можно считать материальной точкой; мячик мал по сравнению с Землей, поэтому его можно считать материальной точкой; изменение высоты мячика мало, поэтому ускорение свободного падения можно считать постоянной величиной g=9,8 м/с 2 и движение по оси Y можно считать равноускоренным; изменение высоты мячика мало, поэтому ускорение свободного падения можно считать постоянной величиной g=9,8 м/с 2 и движение по оси Y можно считать равноускоренным; скорость бросания тела мала, поэтому сопротивлением воздуха можно пренебречь и движение по оси X можно считать равномерным. скорость бросания тела мала, поэтому сопротивлением воздуха можно пренебречь и движение по оси X можно считать равномерным.


Математическая модель x = v0· cosα·t y = v0· sinα· t – g· t 2 /2 v0· sinα· t – g· t 2 /2 = 0 t· (v0· sinα – g· t/2) = 0 v0· sinα – g· t/2 = 0 t = (2· v0· sinα)/g x = (v0· cosα· 2· v0·sinα)/g = (v0 2 · sin2α)/g S x S+L – «попадание» Если х S+L, то это означает "перелет".


Компьютерная модель на языке Паскаль Компьютерная модель на языке Паскаль program s1; uses graph; {подключение графического модуля} uses graph; {подключение графического модуля} var g, V0, A, t: real; var g, V0, A, t: real; gr, gm, S, L, x, i, y: integer; gr, gm, S, L, x, i, y: integer;


Компьютерная модель на языке Турбо Паскаль Компьютерная модель на языке Турбо Паскаль begin g:=9.8; g:=9.8; readln (v0, a, S, L); gr:=detect; initgraph(gr,gm,""); {вызов процедуры GRAPH} line(0,200,600,200);{чертим ось ох} line(0,0,0,600);{чертим ось оу} setcolor(3);{устанавливаем голубой цвет} line(S*10,200,(S+L)*10,200);{чертим площадку}
Компьютерная модель на языке Турбо Паскаль Компьютерная модель на языке Турбо Паскаль x:=round(v0*v0*sin(2*a*3.14/180)/g); if x S+L then outtextxy(500,100,"perelet") else outtextxy(500,100,"popal"); {записываем результат полёта} readln;closegraph;end.



 

 

Это интересно: