→ Эпюры касательных напряжений для прямоугольного, двутаврового, круглого сечений. Напряжение: полное, нормальное, касательное Касательное напряжение в точке сечения называется

Эпюры касательных напряжений для прямоугольного, двутаврового, круглого сечений. Напряжение: полное, нормальное, касательное Касательное напряжение в точке сечения называется

Предполагалось: балка имеет прямоугольное поперечное сечение (рис. 7.11), поэтому

;;;

где y – расстояние от точки, в которой определяется касательное напряжение, до нейтральной оси x.

Подставляя эти формулы в формулу Журавского, для получим:

Касательные напряжения изменяются по высоте поперечного сечения по закону квадратичной параболы (см. рис. 7.11).

При (для наиболее удаленных от нейтральной оси точек) .

Для точек, расположенных на нейтральной оси (при ), .

Эпюры касательных напряжений двутаврового сечения

Характерная особенность двутаврового сечения: резкое изменение ширины поперечного сечения (), где полка соединяется со стенкой.

Определим касательное напряжение в некоторой точке K (рис. 7.12), проведя через нее сечение, ширина которого равна толщине стенки: .

Рассмотрим верхнюю отсеченную часть поперечного сечения (заштрихована на рис. 7.12), статический момент инерции которой относительно x равен сумме статических моментов инерции полки и заштрихованной части стенки:

Эпюра касательных напряжений для двутаврового сечения представлена на рис. 7.12, б.

Касательные напряжения , возникающие в точках полки , по формуле Журавского вычислять нельзя , поскольку при ее выводе использовалось допущение о равномерности распределения касательных напряжений по ширине поперечного сечения, что справедливо только если ширина сечения невелика. Однако очевидно, что касательные напряжения малы и не оказывают практического влияния на прочность балки. Эпюра касательных напряжений для двутаврового сечения показана штриховой линией (см. рис. 7.12, б).

Формула касательного напряжения в точке L (где полка соединяется со стенкой):

Наибольшие касательные напряжения возникают в точках, лежащих на нейтральной оси x.

Эпюры касательных напряжений круглого сечения

Для построения эпюры касательных напряжений круглого сечения выясним направление касательных напряжений при изгибе , возникающих в некоторой точке контура поперечного сечения стержня.

Рассмотрим произвольное поперечное сечение стержня (рис. 7.13, а).

Предположим: в некоторой точке контура К касательное напряжение при изгибе направлено произвольно по отношению к контуру. Разложим касательное напряжение на две составляющие и , направленные соответственно по нормали и касательной к контуру. Если касательное напряжение существует, то по закону парности касательных напряжений на поверхности стержня должно существовать равное ему по значению касательное напряжение при изгибе . Поскольку поверхность стержня свободна от внешних сил, параллельных оси балки z, касательное напряжение на поверхности стержня и, следовательно, .

Таким образом, в точке контура поперечного сечения, поверхность которого не нагружена продольными , касательное напряжение при изгибе направлено по касательной к контуру.

Покажем, что в вершине угла поперечного сечения стержня касательное напряжение равно нулю (рис. 7.13, б).

Предположим, что в вершине угла (в точке M) возникает касательное напряжение . Разложим его на составляющие касательные напряжения и . По


Задача 4.1.1: Совокупность напряжений, возникающих на множестве площадок, проходящих через рассматриваемую точку, называют …

2) полным напряжением;

3) нормальным напряжением;

4) касательным напряжением.

Решение:

1) Ответ верный. Напряженное состояние в точке полностью определяется шестью компонентами тензора напряжений: σ x , σ y , σ z , τ xy , τ yz , τ zx . Зная эти компоненты, можно определить напряжения на любой площадке, проходящей через данную точку. Совокупность напряжений, действующих по множеству площадок (сечений), проходящих через данную точку, называется напряженным состоянием в точке.

2) Ответ неверный! Незнание определения полного напряжения в точке (сила, приходящаяся на единицу площади сечения).

3) Ответ неверный! Напомним, что проекция вектора полного напряжения на нормаль к сечению называется нормальным напряжением.

4) Ответ неверный! Допущена ошибка в определении термина «касательное напряжение».
Проекция вектора полного напряжения на ось, лежащую в плоскости сечения, называется касательным напряжением.

Задача 4.1.2: Площадки в исследуемой точке напряженного тела, на которых касательные напряжения равны нулю, называют …

1) ориентированными; 2) главными площадками;

Решение:

1) Ответ неверный! Термин не соответствует заданному условию. Под ориентированными понимаются площадки, которые проходят через точку по заранее заданному направлению.

2) Ответ верный.

При повороте элементарного объема 1 можно отыскать такую его пространственную ориентацию 2, при которой касательные напряжения на его гранях исчезнут и останутся только нормальные напряжения (некоторые из них могут быть равными нулю). Площадки (грани), на которых касательные напряжения равны нулю, называются главными площадками.

3) Ответ неверный! Термин не соответствует заданному условию. Октаэдрическими называют площадки равнонаклоненные к главным. Касательные напряжения на октаэдрических площадках не равны нулю.

4) Ответ неверный! Напоминаем, что под секущими понимают площадки проведенные через точку, в которой исследуется напряженное состояние.

Задача 4.1.3: Главные напряжения для напряженного состояния, показанного на рисунке, равны… (Значения напряжений указаны в МПа ).

1)σ 1 =150 МПа, σ 2 =50 МПа; 2) σ 1 =0 МПа, σ 2 =50 МПа, σ 3 =150 МПа;

3) σ 1 =150 МПа, σ 2 =50 МПа, σ 3 =0 МПа;

4) σ 1 =100 МПа, σ 2 =100 МПа, σ 3 =0 МПа;

Решение:

1) Ответ неверный! Не указано значение главного напряжения σ 3 =0 МПа.

2) Ответ неверный! Обозначения главных напряжений не соответствуют правилу нумерации.

3) Ответ верный. Одна грань элемента свободна от касательных напряжений. Поэтому это главная площадка, а нормальное напряжение (главное напряжение) на этой площадке также равно нулю.
Для определения двух других значений главных напряжений воспользуемся формулой
,
где положительные направления напряжений показаны на рисунке.

Для приведенного примера имеем , , . После преобразований найдем
В соответствии с правилом нумерации главных напряжений имеем , , , т.е. плоское напряженное состояние.

4) Ответ неверный! Это не главные напряжения, а заданные значения нормальных напряжений, действующие на выделенный элемент.

Задача 4.1.4: В исследуемой точке напряженного тела на трех главных площадках определены значения нормальных напряжений: Главные напряжения в этом случае равны...

1)σ 1 =150 МПа, σ 2 =50 МПа, σ 3 =-100 МПа;

2) σ 1 =150 МПа, σ 2 =-100 МПа, σ 3 =50 МПа;

3) σ 1 =50 МПа, σ 2 =-100 МПа, σ 3 =150 МПа;

4) σ 1 =-100 МПа, σ 2 =50 МПа, σ 3 =150 МПа;

Решение:

1) Ответ верный. Главным напряжениям присваивают индексы 1, 2, 3 так, чтобы выполнялось условие . Следовательно,

2), 3), 4) Ответ неверный! Главным напряжениям присваивают индексы 1, 2, 3 так, чтобы выполнялось условие (в алгебраическом смысле).

Задача 4.1.5: На гранях элементарного объема (см. рисунок) определены значения напряжений в МПа . Угол между положительным направлением оси x и внешней нормалью к главной площадке, на которой действует минимальное главное напряжение, равен …

1) ; 2) ; 3) ; 4) .

Решение:

1), 2), 4) Ответ неверный! По всей видимости, неправильно записана формула для определения угла. Правильная запись:

3) Ответ верный.


Угол определяется по формуле
Подставляя числовые значения напряжений, получаем Поскольку угол отрицательный, откладываем угол по часовой стрелке.

Задача 4.1.6: Значения главных напряжений определяют из решения кубического уравнения Коэффициенты , , называют…

1) инвариантами напряженного состояния; 2) упругими постоянными;

4) коэффициентами пропорциональности.

Решение:

1) Ответ верный. Корни уравнения – главные напряжения − определяются характером напряженного состояния в точке и не зависят от выбора исходной системы координат. Следовательно, при повороте системы осей координат коэффициенты



должны оставаться неизменными. Они называются инвариантами напряженного состояния.

2) Ответ неверный! Ошибка в определении термина. Упругие постоянные характеризуют свойства материала.

3) Ответ неверный! Напомним, что направляющие косинусы – это косинусы углов, которые образует нормаль с осями координат.

4) Ответ неверный! Термин не соответствует условию вопроса


Через любую точку напряженного тела можно провести, как правило, _____________ взаимно перпендикулярные площадки (-ок), на которых касательные напряжения будут равны нулю.

три
две
четыре
шесть

Решение:

На рисунке показано тело, нагруженное внешними силами, и элементарный объем с напряжениями на его гранях. При мысленном повороте элементарного объема можно отыскать такую его пространственную ориентацию, при которой касательные напряжения на гранях будут равны нулю. Эти грани и будут главными площадками.

Тема: Напряженное состояние в точке. Главные площадки и главные напряжения
Главными осями напряженного состояния называются …

Решение:

На рисунке показан элементарный объем, выделенный в окрестности произвольной точки нагруженного тела. Если при данной ориентации элементарного объема касательные напряжения на его гранях равны нулю, то оси x , y , z называются главными осями напряженного состояния. При переходе от одной точки к другой направления главных осей в общем случае изменяются.

Тема: Напряженное состояние в точке. Главные площадки и главные напряжения
Нормальные напряжения, действующие на главных площадках, называются …

Решение:
Три взаимно перпендикулярные площадки, на которых отсутствуют касательные напряжения, называются главными площадками. Нормальные напряжения, действующие на главных площадках, называются главными напряжениями. Максимальное из трех главных напряжений является одновременно наибольшим полным напряжением, действующим по множеству площадок, проходящих через данную точку. Минимальное из трех главных напряжений является наименьшим из множества полных напряжений.

Тема: Напряженное состояние в точке. Главные площадки и главные напряжения

Напряженное состояние элементарного объема, показанное на рисунке, − плоское. Верхняя грань элементарного объема является главной площадкой. Положение двух других главных площадок определяется углом

Решение:

На рисунке показан элементарный объем (вид сверху). Направление нормали к главной площадке определим по формуле где − угол между положительным направлением оси x и нормалью к одной из главных площадок. Для нашего случая Подставляя эти значения в формулу, получаем откуда а

Тема: Напряженное состояние в точке. Главные площадки и главные напряжения

На рисунке показан стержень, растянутый силами F , и элементарный объем выделенный гранями, параллельными плоскостям стержня. При повороте элементарного объема вокруг оси «u » на угол, равный 45 0 , напряженное состояние …

Решение:
На рисунке элементарный объем выделен главными площадками. Главные напряжения: Напряженное состояние – линейное. Вид напряженного состояния не зависит от пространственной ориентации элементарного объема и при любом угле поворота остается линейным.

4.2. Виды напряженного состояния

Задача 4.2.1: Стержень круглого сечения диаметром d испытывает деформации чистый изгиб и кручение. Напряженное состояние в точке В показано на рисунке…

1) ; 2) ; 3) ; 4) .

Решение:

1) Ответ неверный! Крутящий момент вызывает появление касательных напряжений в плоскости перпендикулярной оси стержня.

2) Ответ неверный! Направление касательного напряжения в точке В поперечного сечения должно соответствовать направлению крутящего момента в данном сечении.

3) Ответ верный. Секущими плоскостями, ориентированными вдоль и поперек оси стержня, выделим объемный элемент. В сечении стержня у заделки действуют изгибающий момент М и крутящий момент . От изгибающего момента М в точке В возникает нормальное растягивающее напряжение . Крутящий момент , действующий в плоскости, перпендикулярной оси стержня, вызывает касательное напряжение . Направление касательного напряжения должно быть согласовано с направлением крутящего момента. Поэтому напряженное состояние элемента на рисунке 4 соответствует напряженному состоянию в точке В .

4) Ответ неверный! От крутящего момента в точке В поперечного сечения возникает касательное напряжение . Направление касательного напряжения должно быть согласовано с направлением крутящего момента.

Задача 4.2.2: Стержень испытывает деформации растяжение и чистый изгиб. Напряженное состояние, которое возникает в опасной точке, называется…

1) плоским; 2) объемным; 3) линейным; 4) чистым сдвигом.

Решение:

1) Ответ неверный! При плоском напряженном состоянии одно значение главного напряжения равно нулю.

2) Ответ неверный! В опасной точке отлично от нуля только одно главное напряжение. При объемном напряженном состоянии отличны от нуля три главных напряжения.

3) Ответ верный. Опасные точки расположены бесконечно близко к верхней грани элемента. В них возникают только растягивающие нормальные напряжения от продольной силы и изгибающего момента. Эпюры распределения напряжений от каждого внутреннего силового фактора и результирующая эпюра показаны на рисунке.

Следовательно, в опасной точке будет линейное напряженное состояние.

4) Ответ неверный! При чистом сдвиге два главных напряжения равны, но противоположны по знаку, а третье равно нулю.

Задача 4.2.3: Напряженное состояние «чистый сдвиг» показано на рисунке…

1) ; 2) ; 3) ; 4) .

Решение:

1) Ответ неверный! На рисунке показано плоское напряженное состояние – двухосное растяжение.

2) Ответ неверный! Элемент находится в условиях плоского напряженного состояния – двухосного смешанного напряженного состояния.

3) Ответ верный.

Чистый сдвиг – напряженное состояние, когда на гранях выделенного элементарного объема действуют только касательные напряжения. Если элементарный объем повернуть на угол, равный , то касательные напряжения на его гранях (площадках) будут равны нулю, но появятся нормальные (главные) напряжения и . Таким образом, чистый сдвиг может быть реализован растяжением и сжатием в двух взаимно перпендикулярных направлениях напряжениями, равными по абсолютной величине.
Следовательно, напряженное состояние «чистый сдвиг» показано на рисунке 3.

4) Ответ неверный! Данный элемент испытывает линейное напряженное состояние.

Задача 4.2.4: Тип напряженного состояния, показанного на рисунке, называется…

1) линейным; 2) плоским; 3) объемным; 4) чистым сдвигом.

Решение:

1) Ответ верный. Тип напряженного состояния определяется в зависимости от значений главных напряжений. В примере одна грань свободна от касательных напряжений – это главная площадка. Нормальное напряжение, действующее на главной площадке, называют главным напряжением. В данном случае оно равно нулю. Используя формулу , найдем два других главных напряжения. После преобразований получим , . В соответствии с принятыми обозначениями имеем , . Два главных напряжения равны нулю. Следовательно, на рисунке показано линейное напряженное состояние.

2) Ответ неверный! При плоском напряженном состоянии одно главное напряжение равно нулю. В данном случае два главных напряжения равны нулю.

3) Ответ неверный! При объемном напряженном состоянии В данном случае два главных напряжения равны нулю. Поэтому данное напряженное состояние не является объемным.

4) Ответ неверный! При чистом сдвиге , . Расчеты показывают, что для данного случая это неверно.

Задача 4.2.5: Напряженное состояние при значениях , , называют…

1) объемным; 2) чистым сдвигом; 3) плоским; 4) линейным.

Решение:

1) Ответ неверный! При объемном напряженном состоянии отличны от нуля все три главных напряжения.

2) Ответ неверный! При чистом сдвиге одно значение главного напряжения равно нулю, а два других равны по величине, но противоположны по знаку.

3) Ответ верный. Тип напряженного состояния определяется значениями главных напряжений. В случае, когда все три главных напряжения отличны от нуля, имеем объемное напряженное состояние. Если одно главное напряжение равно нулю - плоское напряженное состояние, а когда два равны нулю – линейное. Следовательно, в данном примере будет плоское напряженное состояние.

4) Ответ неверный! При линейном напряженном состоянии только одно главное напряжение отлично от нуля.

Задача 4.2.6: На гранях элементарного объема (см. рисунок) действуют напряжения заданные в МПа . Напряженное состояние в точке …

1) линейное; 2) плоское (чистый сдвиг); 3) плоское; 4) объемное.

Решение:

1) Ответ неверный! Фронтальная грань элементарного объема свободна от касательных напряжений. Это означает, что данная грань является главной площадкой и одно из трех главных напряжений равно (-50МПа ). Два других главных напряжения определите по формуле

2) Ответ неверный! Напомним, что при чистом сдвиге одно из главных напряжений равно нулю. Два других равны по абсолютной величине и противоположны по знаку.

3) Ответ верный. Передняя грань элементарного объема свободна от касательных напряжений. Это означает, что она является главной площадкой и одно из трех главных напряжений равно (-50 МПа ). Два других главных напряжения определим по формуле

Поставляя числовые значения, получаем


Присваивая главным напряжениям индексы, имеем:

Таким образом, напряженное состояние плоское (двухосное сжатие).

4) Ответ неверный! Фронтальная грань элементарного объема свободна от касательных напряжений. Это означает, что данная грань является главной площадкой и одно из трех главных напряжений равно (-50 МПа ). Два других главных напряжения можно определить по формуле
Результаты расчетов покажут, какое напряженное состояние изображено на рисунке.



Напряженное состояние элементарного объема, показанное на рисунке, является – …

Решение:
Главные напряжения являются корнями кубического уравнения
где:



В нашем случае , и кубическое уравнение принимает вид откуда
Таким образом, напряженное состояние элементарного объема линейное (одноосное растяжение).

Тема: Виды напряженного состояния

Стальной кубик вставлен без зазора в жесткую обойму (см. рис.). На верхнюю грань кубика действует равномерно распределенное давление интенсивности р . Поверхности кубика и обоймы абсолютно гладкие. Напряженное состояние кубика показано на рисунке …

в
г
б
а

Решение:

Силы трения между абсолютно гладкими поверхностями кубика и обоймы отсутствуют. Поэтому касательные напряжения на гранях кубика равны нулю, и все грани являются главными площадками. В процессе сжатия ребра кубика, направленные вдоль осей x и y , стремятся удлиниться. Удлинение вдоль оси y происходит свободно. Удлинение вдоль оси x невозможно (мешает жесткая обойма). В связи с невозможностью удлинения вдоль оси x , со стороны вертикальных плоскостей обоймы на кубик действуют усилия в виде равномерно распределенных по площади нагрузок с некоторой интенсивностью . Интенсивности р и следует рассматривать как главные напряжения. Таким образом, из трех главных напряжений одно (по фронтальной грани кубика). Поэтому напряженное состояние кубика плоское (рис. в ).

Тема: Виды напряженного состояния

На рисунке показан стержень, работающий на кручение с растяжением. Напряженное состояние в точке К является – …

Решение:

В точке К поперечного сечения действует нормальное напряжение от силы F . Эпюра касательных напряжений от крутящего момента показана на рисунке 1. В угловых точках Поэтому напряженное состояние в точке К − линейное (одноосное растяжение, рис. 2).

Тема: Виды напряженного состояния

Напряженное состояние элементарного объема является – …

Решение:

Верхняя грань элементарного объема является главной площадкой, поэтому одно главное напряжение равно Два других главных напряжения вычисляем по формуле
В данном случае (см. рис.) Подставляя в формулу, получаем
Присваивая главным напряжениям соответствующие индексы, получаем
Напряженное состояние − объемное.

Тема: Виды напряженного состояния

На тело действует равномерно распределенное по поверхности давление р (см. рис.). Напряженное состояние элементарного объема является – …

Решение:

Если на тело действует равномерно распределенное по поверхности давление р (см. рис.), то напряженное состояние в любой точке тела объемное (трехосное сжатие). При этом при любой пространственной ориентации элементарного объема.

Ранее мы для простоты и наглядности рассматривали обычную деревянную линейку в качестве балки, что позволило с известными допущениями вывести основные уравнения и формулы для расчета несущей способности балки. Благодаря этим уравнениям мы построили эпюры поперечных сил "Q" и эпюры изгибающих моментов "М".

Рисунок 149.2.1 . Эпюры поперечных сил и изгибающих моментов, действующих в поперечных сечениях балки при сосредоточенной нагрузке.

Что в итоге позволило достаточно просто и наглядно определить значение максимального изгибающего момента и соответственно значение максимальных нормальных растягивающих и сжимающих напряжений, возникающих в наиболее нагруженном поперечном сечении балки.

Дальше, зная расчетное сопротивление материала балки (значения расчетных сопротивлений проводятся в соответствующих СНиПах), можно достаточно легко определить момент сопротивления поперечного сечения, а затем и другие параметры балки, высоту и ширину, если балка прямоугольного сечения, диаметр, если балка круглого сечения, номер по сортаменту, если балка из металлического горячекатаного профиля.

Такой расчет на прочность является расчетом по первой группе предельных состояний и позволяет определить максимально допустимую нагрузку, которую может выдержать рассчитываемая конструкция. Превышение максимально допустимой нагрузки приведет к разрушению конструкции. Как именно будет разрушаться конструкция, нас в данном случае не интересует, так как данный сайт посвящен не вопросам теоретических и практических исследований предельных состояний материалов, а всего лишь некоторым методам расчетов наиболее распространенных строительных конструкций.

Как правило инженерные расчеты конструкций, которые будут использоваться сотнями тонн и десятками кубометров, выполняются так, чтобы получить максимально загруженную конструкцию. Поэтому такие расчеты достаточно сложные и разного рода коэффициентов, учитывающих срок службы конструкции, характер нагрузок, цикличность, динамичность нагрузок, неоднородность используемого материала и т.д. - десятки. Это логично так как при валовом производстве каждый процент в итоге дает ощутимую экономию. В частном строительстве, выполняемом один раз, прочность конструкции, пусть даже с двукратным запасом намного важнее возможной экономии материалов и потому расчеты для частного малоэтажного строительства можно максимально упростить, используя всего лишь один поправочный коэффициент γ = 1.6÷2, если на этот коэффициент будут умножаться значения напряжений, или γ = 0.5÷0.7, если на этот коэффициент будет умножаться значение расчетного сопротивления. Однако этим даже такие простые расчеты не ограничиваются.

Любая балка, имеющая длину значительно больше, чем высоту поперечного сечения, представляющая собой стержень, под действием нагрузок будет деформироваться. Результатами деформации являются смещение центральной оси балки по оси у относительно оси х , проще говоря прогиб, а также поворот поперечных сечений балки относительно плоскости поперечного сечения. И эти самые прогибы и углы поворота вне зависимости от того, какие опоры у балки и какие на нее действуют нагрузки, также можно определить. Для определения максимального угла поворота и максимального прогиба также строятся соответствующие эпюры, позволяющие определить, какое поперечное сечение сместится в результате прогиба больше всего и какое будет наклонено больше всего.

Рисунок 174.5.6 . Эпюра углов поворота при действии сосредоточенной нагрузки посредине балки

Эпюра прогибов здесь не приводится, но как ни странно, это самая простая эпюра, показывающая положение оси, проходящей через поперечные сечения балки в результате деформации и эту эпюру воочию можно наблюдать на любой достаточно прогнувшейся балке или любой другой конструкции. Зная модуль упругости материала балки и момент инерции поперечного сечения определить максимальный прогиб также не очень сложно. Максимально упростить решение этих задач позволяют расчетные схемы для балок , к которым в зависимости от характера опор и вида нагружения даны соответствующие формулы.

Такой расчет деформаций является расчетом по предельным состояниям второй группы и достаточно наглядно показывает, на какую величину прогнется балка. Это бывает важно не только в связи с технологическими ограничениями, например для подкрановых балок, но также и из эстетических соображений. Например, когда потолок, а точнее перекрытие, хотя и достаточно прочное, заметно прогнется, то приятного в этом мало. Максимально допустимые величины прогибов для различных строительных конструкций приводятся в СНиП 2.01.07-85 "Нагрузки и воздействия" (в его актуализированной редакции). Впрочем при расчетах для себя никто не запрещает использовать еще меньшие значения прогиба.

Тут у читателя может возникнуть вполне резонный вопрос, а зачем понадобилось строить эпюру касательных напряжений "Q", если ни в каких расчетах эта эпюра не участвует. Что ж, пришло время ответить на этот вопрос.

Дело в том, что расчет разного рода балок, особенно постоянного прямоугольного сечения, лежащих горизонтально, на прочность при действии касательных напряжений очень редко является определяющим в отличие от приведенных выше расчетов. Тем не менее знать, что такое - касательные напряжения - и как они влияют на работу конструкции, пусть даже очень упрощенно, но все-таки надо.

Как следует из определения, касательные напряжения действуют в плоскости поперечного сечения, как бы касаются поперечного сечения потому и названы касательными. Определить значение касательных напряжений на первый взгляд просто: достаточно разделить значение поперечной силы (для этого нам и нужна эпюра "Q"), на площадь поперечного сечения (в рассматриваемом нами примере поперечные силы действовали только вдоль оси у и далее этого нам вполне хватит, усложнить любой расчет мы успеем всегда):

т = Q/F = Q/(bh) (270.1)

В итоге мы можем построить эпюру касательных напряжений "τ "(в дополнение к нормальным напряжениям "σ") следующего вида:

Рисунок 270.1 . Предварительная эпюра касательных напряжений "τ "

Однако такая эпюра касательных напряжений была бы справедлива для некоего абстрактного материала, обладающего линейной упругостью вдоль оси у , и абсолютно жесткого вдоль оси z , в результате чего в поперечном сечении такого материала не происходит перераспределения напряжений и есть только один вид деформации относительно оси у . В действительности же любое тело, обладающее изотропными свойствами, под действием нагрузок пытается сохранить свой объем, а значит и рассматриваемое нами сечение пытается сохранить свою площадь. Наглядный пример, когда вы садитесь на мяч, высота его под действием вашего веса уменьшается, но увеличивается ширина. Причем процесс этот носит не линейный характер. Если вырезать из теста кубик или параллелепипед, а затем надавить на него, то боковые грани станут выпуклыми, подобный процесс происходит и при лабораторных испытаниях на сжатие образцов металла или других материалов.

Кроме всего прочего это означает еще и то, что касательные напряжения, действующие вдоль оси у , вызывают появление касательных напряжений вдоль оси z и эпюра касательных напряжений вдоль оси z будет более наглядно показывать изменение касательных напряжений по отношению к высоте балки. При этом форма эпюры будет напоминать боковую грань сплюснутого кубика из теста, а площадь эпюры конечно же не изменится. Т.е. значения эпюры касательных напряжений в самом низу и в самом верху поперечного сечения будут равны нулю, а максимальное значение (при прямоугольном сечении) будет посредине высоты сечения и явно больше Q/F. Исходя из условия равенства площадей эпюр максимальное значение эпюры касательных напряжений не может быть более 2Q/F, да и то только в том случае, если эпюра будет представлять собой два треугольника и в этом случае максимальное значение и есть высота треугольников. Однако как мы уже выяснили эпюра по своему виду больше напоминает часть круга или параболу, т.е. значение максимального касательного напряжения будет составлять около 1.5Q/F :

Рисунок 270.2 . Более точная эпюра касательных напряжений.

Серой линией показана предварительно принятая нами эпюра касательных напряжений, но теперь касательные напряжения направлены вдоль оси z .

Математически изменение касательных напряжений в зависимости от высоты сечения можно выразить через изменение статического момента отсеченной части сечения с учетом изменения ширины сечения, так как далеко не всегда балки имеют прямоугольную форму сечения. В итоге формула для определения касательных напряжений (вывод формулы здесь не приводится) имеет следующий вид:

т = Q y S z отс /bI z (270.2) - формула проф. Д. И. Журавского

где Q y - значение поперечной силы в рассматриваемом поперечном сечении, определяется по эпюре "Q"

S z отс - статический момент отсеченной части сечения на рассматриваемой высоте относительно оси z . Определяется как площадь отсеченной части, умноженная на расстояние между центром тяжести всего сечения и центром тяжести отсеченной части сечения. Например, в самом низу поперечного сечения, т.е. при высоте h=0, площадь отсеченной части сечения будет также равна 0, а значит и касательные напряжения, действующие по ширине b поперечного сечения, также будут равны нулю. Для сечения, проходящего через центр тяжести поперечного сечения, т.е. при высоте отсеченной части сечения, равной h/2, статический момент будет составлять (bh/2)(h/4) = bh 2 /8. При высоте отсеченного сечения, равной высоте поперечного сечения статический момент будет равен нулю, так как центр тяжести отсеченной части сечения в этом случае будет совпадать с центром тяжести сечения.

b - ширина поперечного сечения на рассматриваемой высоте поперечного сечения. Для балок прямоугольного сечения ширина сечения величина постоянная, однако бывают балки круглого, таврового, двутаврового и любого другого сечения. Более того, определение касательных напряжений чаще всего и используется при расчете балок не прямоугольного сечения, так как при переходе сечения из полок в стенку появляется значительный скачок касательных напряжений в связи с изменением ширины сечения, причем переход из полок в стенку обычно происходит на такой высоте, где нормальные напряжения достаточно велики и это учитывается соответствующим расчетом.

I z - момент инерции поперечного сечения относительно оси z . В данном случае единственная более менее постоянная величина. Для прямоугольного поперечного сечения момент инерции составляет bh 3 /12.

Таким образом, согласно формулы (270.2) максимальное значение касательных напряжений составит:

т = 12Qbh 2 /(8b 2 h 3) = 1.5Q/F (270.3)

Такой же результат дала нам и геометрия.

И еще. Для материалов, обладающих ярко выраженными анизотропными свойствами, например, для древесины проверка на прочность по касательным напряжениям необходима. Дело в том, что прочность древесины сжатию вдоль волокон и прочность древесины сжатию поперек волокон - абсолютно разные вещи. Поэтому проверка выполняется для поперечных сечений, в которых касательные напряжения максимальны, как правило это сечения на опорах балки (при равномерно распределенной нагрузке). В этом случае полученное значение касательных напряжений сравнивается со значением расчетного сопротивления древесины сжатию или смятию поперек волокон - R c90 .

Впрочем, существует и другой подход к вопросу определения касательных напряжений: под действием нагрузок балка деформируется, при этом максимальные нормальные сжимающие и растягивающие напряжения возникают в самом низу и в самом верху поперечного сечения балки, что можно видеть по эпюре "σ" на рис.270.1.

При этом между волокнами такого неоднородного материала, как древесина, как впрочем и между слоями любого другого материала возникают касательные напряжения, направленные теперь по оси х , т.е. по той же оси, что и нормальные сжимающие и касательные напряжения, возникающие в результате действия изгибающего момента.

Происходит это от того, что каждый рассматриваемый слой испытывает разные по значению нормальные нагрузки и в результате все того же перераспределения напряжений и возникают касательные напряжения . Эти касательные напряжения как бы пытаются расколоть балку на отдельные слои, каждый из которых будет работать как отдельная балка.

Разница же несущей способности между отдельно взятыми слоями и цельной балкой очевидна. Например, если взять пачку бумаги хоть в 500 листов, то согнуть такую пачку - пара пустяков, а если склеить все листы, т.е. слои балки между собой, то мы получим цельную балку и вот ее уже согнуть будет намного труднее. Но между склеенными листами и будут возникать те самые, условно говоря, нормальные касательные напряжения. Впрочем, значение нормальных касательных напряжений определяется таким же образом и в расчетах участвует все та же поперечная сила, определяемая по эпюре "Q". Вот только рассматривается не отсеченная, а скалываемая часть сечения, соответственно статический момент может обозначаться - S z ск . В этом случае полученное значение касательных напряжений сравнивается со значением расчетного сопротивления древесины сколу вдоль волокон - R cк .

Правда, значения R с90 и R cк для древесины имеют одинаковое значение, но тем не менее касательные напряжения от действия поперечных сил и от деформаций в результате прогиба принято различать (так как рассматриваются две перрпендикулярные друг другу главные площадки напряжений), да и направление действия касательных напряжений важно при определении общего напряжения в исследуемой точке тела.

Впрочем, все это не более чем общие понятия о касательных напряжениях. В реальных материалах процесс перераспределения напряжений намного более сложный, все потому, что даже металл отнести к изотропным материалам можно достаточно условно. Впрочем эти вопросы рассматривает отдельная научная дисциплина - теория упругости. При расчете строительных конструкций, представляющих собой стержни - балки или пластины - плиты размером на помещение, вполне можно пользоваться формулой (270.2), выведенной на основе общих положений линейной теории упругости. При расчете массивных тел следует использовать методы нелинейной теории упругости.

Если мысленно вырезать вокруг какой-нибудь точки тела элемент в виде бесконечного малого кубика, то по его граням в общем случае будут действовать напряжения, представленные на рис. 3.1.

Совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим какую-либо точку называют напряженным состоянием тела в данной точке

Рис. 3 . 1

Таким образом, на гранях элементарного параллелепипеда, выделенного в окрестности точки нагруженного тела, действуют девять компонентов напряжения. Запишем их в виде следующей квадратной матрицы:

где в первой, второй и третьей строках расположены составляющие напряжений соответственно на площадках, перпендикулярных к осям , , . Эта совокупность напряжений называется тензором напряжений .

Закон парности касательных напряжений. Главные площадки и главные напряжения.

Составим уравнение моментов всех сил, приложенных к элементарному параллелепипеду относительно оси . (рис. 3.1.).

Силы, параллельные этой оси и пересекающие ее, в уравнение не войдут. Моменты сил на двух гранях, перпендикулярных оси , уравновешиваются, равно как и моменты сил на верхней и нижней гранях элемента. Таким образом, получаем:

Отсюда следует, что .

Аналогично из двух других уравнений находим:

Итак, имеем равенства

называемые законом парности касательных напряжений

Закон парности касательных напряжений – касательные напряжения на двух любых, но взаимно перпендикулярных площадках, направленные перпендикулярно к линии пересечения площадок, равны по величине. При этом они стремятся повернуть элемент в разные стороны.

При изменении ориентации граней выделенного элемента меняются также действующие на его гранях напряжения. Можно провести такие площадки, на которых касательные напряжения равны нулю. Площадки, на которых касательные напряжения равны нулю, называются главными площадками , а нормальные напряжения на этих площадках – главными напряжениями .

Можно доказать, что в каждой точке напряженного тела существует три главные взаимно перпендикулярные площадки.

Главные напряжения обозначают , , . При этом индексы следует расставлять так, чтобы выполнялось неравенство

Если отличны от нуля все три главных напряжения, то напряженное состояние называется трехосным или объемным (рис.3.2, а).

Если равно нулю одно из главных напряжения, то напряженное состояние называется двухосным или плоским (рис.3.2, б).

Если равно нулю два главных напряжения, то напряженное состояние называется одноосным или линейны м (рис.3.2, в).

Рис. 3 . 2

Плоское напряженное состояние.

При исследовании напряженного состояния элементов конструкций наиболее часто приходится иметь дело с плоским напряженным состоянием. Оно встречается при кручении, изгибе и сложном сопротивлении. Поэтому на нем мы остановимся несколько подробнее.

Рассмотрим элемент, грани которого являются главными площадками.

Рис. 3 . 3

По ним действуют положительные напряжения и , а третье главное напряжение (направление перпендикулярно к плоскости чертежа).

Проведем сечение I – I, которое определит площадку (), характеризуемую положительным углом . Напряжения и по этой площадке будут определяться по формулам:

(3.3)

Сжимающие главные напряжения подставляют в эти формулы со знаком «минус», а угол отсчитывают от алгебраически большего главного напряжения.

Проведем сечение II – II, которое определит площадку , перпендикулярную площадке . Нормаль к ней образует с направлением угол

Подставив в формулы (3.2) и (3.3) значения угла , будем иметь

. (3.5)

Совокупность формул (3.2) - (3.5) дает возможность находить напряжения по любым взаимно перпендикулярным наклонным площадкам, если известны главные напряжения.

Складывая равенства (3.2) и (3.4), обнаруживаем, что

, (3.6)

т. е. сумма нормальных напряжений по двум взаимно перпендикулярным площадкам не зависит от угла наклона этих площадок и равна сумме главных напряжений.

Из формул (3.3) и (3.5) видим, что касательные напряжения достигают наибольшей величины при , т. е. по площадкам, наклоненным к главным площадкам под углом , причем

. (3.7)

Сравнивая формулы (3.3) и (3.5), находим, что

Это равенство выражает закон парности касательных напряжений.

Проведем теперь еще два сечения (рис. 3.3): Сечение ІІІ – ІІІ, параллельное І – І, и сечение ІV – ІV, параллельное ІІ – ІІ. Элемент , выделенный четырьмя сечениями из элемента (рис. 3.4, а), будет иметь вид, показанный на рис 3.4, б. Оба элемента определяют одно и то же напряженное состояние, но элемент представляет его главными напряжениями, а элемент - напряжениями на наклонных площадках.

Рис. 3 . 4

В теории напряженного состояния можно разграничить две основные задачи.

Прямая задача . В точке известны положения главных площадок и соответствующие им главные напряжения; требуется найти нормальные и касательные напряжения по площадкам, наклоненным под заданным углом к главным.

Обратная задача . В точке известны нормальные и касательные напряжения, действующие в двух взаимно перпендикулярных площадках; требуется найти главные направления и главные напряжения. Обе задачи можно решать как аналитически, так и графически.

Прямая задача в плоском напряженном состоянии. Круг напряжений (круг Мора).

Аналитическое решение прямой задачи дается формулами (3.2) – (3.5).

Проанализируем напряженное состояние, воспользовавшись простым графическим построением. Для этого введем в рассмотрение геометрическую плоскость и отнесем ее к прямоугольным координатным осям и . Порядок расчета опишем на примере напряженного состояния, изображенного на рис. 3.5, а.

Выбрав для напряжений некоторый масштаб, откладываем на оси абсцисс (рис 3.5, б) отрезки

На как на диаметре строим окружность с центром в точке . Построенный круг носит название круга напряжений или круга Мора .

Рис. 3 . 5

Координаты точек круга соответствуют нормальным и касательным напряжениям на различных площадках. Так, для определения напряжения на площадке, проведенной под углом (рис. 3.5, а) из центра круга (рис 3.5, б) проводим луч под углом до пересечения с окружностью в точке (положительные углы откладываем против часовой стрелки). Абсцисса точки (отрезок ) равна нормальному напряжению , а ордината ее (отрезок ) – касательному напряжению .

Напряжение на площадке, перпендикулярной к рассмотренной, найдем, проведя луч под углом и получив в пересечении с окружностью точку . Очевидно, ордината точки соответствует касательному напряжению , а абсцисса точки - нормальному напряжению .

Проведя из точки линию, параллельную (в нашем случае горизонталь), до пересечения с кругом, найдем полюс – точку . Линия, соединяющая полюс с любой точкой круга, параллельна направлению нормального напряжения на площадке, которой эта точка соответствует. Так, например, линия параллельна главному напряжению . Очевидно, что линия параллельна направлению главного напряжения .

Обратная задача в плоском напряженном состоянии.

При практических расчетах обычно определяют нормальные и касательные напряжения на некоторых двух взаимно перпендикулярных площадках. Пусть, например, известны напряжения , , , (рис. 3.6, а). По этим данным требуется определить величины главных напряжений и положение главных площадок.

Сначала решим эту задачу графически. Примем, что >, а >.

В геометрической плоскости в системе координат нанесем точку , с координатами , и точку с координатами ,(рис. 3.6, б). Соединив точки и , находим центр круга – точку - и радиусом проводим окружность. Абсциссы точек ее пересечения с осью - отрезки и - дадут соответственно величины главных напряжений и .

Для определения положения главных площадок найдем полюс и воспользуемся его свойством. Проведем из точки линию параллельно линии действия напряжения , т. е. горизонталь. Точка пересечения этой линии с окружностью и является полюсом. Соединяя полюс с точками и , получим направления главных напряжений. Главные площадки перпендикулярны к найденным направлениям главных напряжений.

Рис. 3 . 6

Используем построенный круг для получения аналитических выражений главных напряжений и :

(3.9)

(3.10)

Формула (3.10) определяет единственное значение угла , на который нужно повернуть нормаль , чтобы получить направление алгебраически большего главного напряжения. Отрицательному значению соответствует поворот по часовой стрелке.

Если одно из главных напряжений окажется отрицательным, а другое положительным, то их следует обозначать и . Если оба главных напряжения окажутся отрицательными, то их следует обозначать и .

Лекция 4 . Теории прочности . Чистый сдвиг{jcomments on}

Теории прочности.

Важнейшей задачей инженерного расчета является оценка прочности элемента конструкции по известному напряженному состоянию. Для простых видов деформаций, в частности для одноосных напряженных состояний, определение значений опасных напряжений не представляет особых трудностей. Вспомним, что под опасными напряжениями понимают напряжения, соответствующие началу разрушения (при хрупком состоянии материала) или появлению остаточных деформаций (в случае пластического состояния материала):

По опасным напряжениям устанавливают допускаемые напряжения, обеспечивающие определенный запас против наступления предельного состояния.

При сложном напряженном состоянии, как показывают опыты, опасное состояние может иметь место при различных значениях главных напряжений , , в зависимости от соотношений между ними. В этом случае вводят гипотезу о преимущественном влиянии на прочность материала того или иного фактора. Предельное значение фактора, определяющего прочность, находят на основании простых опытов (на растяжение, сжатие, кручение).

Выбранная указанным образом гипотеза называется механической теорией прочности .

Рассмотрим классические теории прочности.

Напряжение – численная мера распределения внутренних сил по плоскости поперечного сечения. Его используют при исследовании и определении внутренних сил любой конструкции.

Выделим на плоскости сечения площадку A ; по этой площадке будет действовать внутренняя сила R .

Величина отношения R / A = p ср называется средним напряжением на площадке A . Истинное напряжение в точке А получим устремив A к нулю:

Нормальные напряжения возникают, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц по плоскости рассматриваемого сечения.

Очевидно, что
. Касательное напряжение в свою очередь может быть разложено по направлениям осейx и y (τ z х , τ z у ). Размерность напряжений – Н/м 2 (Па).

При действии внешних сил наряду с возникновением напряжений происходит изменение объема тела и его формы, т. е. тело деформируется. При этом различают начальное (недеформированное) и конечное (деформированное) состояния тела.

16.Закон парности касательных напряжений

Касат. напряжение на 2-ух взаимно перпендик. площ. направлены к ребру или от ребра и равны по величине

17.Понятие о деформациях. Мера линейной, поперечной и угловой деформации

Деформац – наз. взаимное перемещение точек или сечений тела по сравн с полож-ями тела которые они занимали до приложения внеш сил

бывают: упругие и пластические

а) линейная деформация

мерой явл относительное удлинение эпсила =l1-l/l

б) поперечная деф

мерой явл. относительное сужение эпсила штрих=|b1-b|/b

18.Гипотеза плоских сечений

Основные гипотезы (допущения): гипотеза о не надавливании продольных волокон: волокна, параллельные оси балки, испытывают деформацию растяжения – сжатия и не оказывают давления друг на друга в поперечном направлении; гипотеза плоских сечений : сечение балки, плоское до деформации, остается плоским и нормальным к искривленной оси балки после деформации. При плоском изгибе в общем случае возникают внутренние силовые факторы : продольная сила N, поперечная сила Q и изгибающий момент М. N>0, если продольная сила растягивающая; при М>0 волокна сверху балки сжимаются, снизу растягиваются. .

Слой, в котором отсутствуют удлинения, называется нейтральным слоем (осью, линией). При N=0 и Q=0, имеем случай чистого изгиба. Нормальные напряжения:
, - радиус кривизны нейтрального слоя, y - расстояние от некоторого волокна до нейтрального слоя.

19.Закон Гука (1670). Физический смысл входящих в него величин

Он установил связь между напряжением, растяжением и продольной деформацией.
где Е – коэффициент пропорциональности (модуль упругости материала).

Модуль упругости характеризует жёсткость материала, т.е. способность сопротивляться деформациям. (чем больше Е, тем менее растяжимый материал)

Потенциальная энергия деформации:

Внешние силы, приложенные к упругому телу, совершают работу. Обозначим её через А. В результате этой работы накапливается потенциальная энергия деформированного тела U. Кроме того, работа идёт на сообщение скорости массе тела, т.е. преобразуется в кинетическую энергию К. Баланс энергии имеет вид А = U + К.

 

 

Это интересно: