→ Биология тема вирусы. Вирусы — неклеточная форма жизни. Симптомы проникновения вируса в организм

Биология тема вирусы. Вирусы — неклеточная форма жизни. Симптомы проникновения вируса в организм

Доклад про вирусы по биологии, который поможет Вам подготовиться к занятию, изложен в этой статье.

Сообщение про вирусы

Что такое вирусы?
Характеристика вирусов

Вирусы существуют на планете во всех ее экосистемах. Их изучает наука вирусология, а точнее микробиология. Вирусная частица состоит из:

  • Генетических данных ДНК или РНК.
  • Белковой оболочки.

Распространяются такими способами:

  1. Вирусы, которые живут в растениях, распространяют насекомые.
  2. Вирусы, которые живут в животных, распространяются кровососущими насекомыми.
  3. Вирусы, которые живут в человеческом организме, передаются половым, воздушно-капельным путем, через переливание крови.

Данные внеклеточные агенты имеют некоторые сходства с живыми клетками: у них имеется набор генов, размножаются (создавая свои копии) и они эволюционируют методом естественного отбора. Но живой материей их назвать нельзя, так как клеточного строения у них нет. Вирусы для синтезирования собственных молекул ищут клетку-хозяина. Без нее они не способны размножаться. В 2013 году ученые обнаружили, что некоторые бактериофаги обладают своей иммунной системой, которая может адаптироваться.

Классификация вирусов

Лауреат Нобелевской премии Дейвид Балтимор разработал классификацию вирусов. Она актуальна и сегодня. Основывается на образовании мРНК: вирусы образовывают ее из своих геномов. Итак, вирусы делятся на:

  • Организмы с двуцепочной ДНК без стадии РНК. Это герпевирусы, мимивирусы.
  • Вирусы с одноцепочной ДНК с положительной полярностью. Это парвовирусы.
  • Организмы с двучепочной РНК. Это ротавирусы.
  • Вирусы с одноцепочной РНК положительной полярности. Это ортомиксовирусы, пикорнавирусы, флавивирусы.
  • Организмы з одноцепочной молекулой РНК негативной или двойной полярности. Это филовирусы.
  • Вирусы с одноцепочной положительной РНК, синтезом ДНК на матрице РНК. Это ВИЧ.
  • Организмы с двуцепочной ДНК, синтезом ДНК на матрице РНК. Это гепатит В.

Жизнедеятельный цикл вирусов

У всех вирусов жизненный цикл протекает почти одинаково. Для размножения они используют материалы клетки хозяина и производят огромное количество своих копий. Жизнедеятельность этих организмов складывается из взаимоперекрывающихся этапов. Первый этап предусматривает прикрепление вируса к хозяйственной клетке и создание между ними белковой связи. Следующий шаг – проникновение в клетку и передача ей своего генетического материала. Дальше происходит разрушение капсида и освобождение геномной нуклеиновой кислоты. Паразит внутри клетки начинает собирать вокруг себя вирусные частицы и модифицировать белок. После проделанной работы вирус покидает клетку, продолжая активно развиваться дальше, живя в ней.


Открытие вирусов Д.И.Ивановским в 1892г. положило начало развитию науки вирусологии. Более быстрому ее развитию способствовали: изобретение электронного микроскопа, разработка метода культивирования микроорганизмов в культурах клеток.

В настоящее время вирусология- бурно развивающаяся наука, что связано с рядом причин:

Ведущей ролью вирусов в инфекционной патологии человека (примеры- вирус гриппа, ВИЧ- вирус иммунодефицита человека, цитомегаловирус и другие герпесвирусы) на фоне практически полного отсутствия средств специфической химиотерапии;

Использованием вирусов для решения многих фундаментальных вопросов биологии и генетики.

Основные свойства вирусов (и плазмид), по которым они отличаются от остального живого мира.

1. Ультрамикроскопические размеры (измеряются в нанометрах). Крупные вирусы (вирус оспы) могут достигать размеров 300 нм, мелкие- от 20 до 40 нм. 1 мм=1000 мкм, 1 мкм=1000 нм.

3. Вирусы не способны к росту и бинарному делению.

4. Вирусы размножаются путем воспроизводства себя в инфицированной клетке хозяина за счет собственной геномной нуклеиновой кислоты.

6. Средой обитания вирусов являются живые клетки- бактерии (это вирусы бактерий или бактериофаги), клетки растений, животных и человека.

Все вирусы существуют в двух качественно разных формах: внеклеточной- вирион и внутриклеточной- вирус. Таксономия этих представителей микромира основана на характеристике вирионов- конечной фазы развития вирусов.

Строение (морфология) вирусов.

1. Геном вирусов образуют нуклеиновые кислоты, представленные одноцепочечными молекулами РНК (у большинства РНК- вирусов) или двухцепочечными молекулами ДНК (у большинства ДНК- вирусов).

2. Капсид - белковая оболочка, в которую упакована геномная нуклеиновая кислота. Капсид состоит из идентичных белковых субъединиц- капсомеров. Существуют два способа упаковки капсомеров в капсид- спиральный (спиральные вирусы) и кубический (сферические вирусы).

При спиральной симметрии белковые субъединицы располагаются по спирали, а между ними, также по спирали, уложена геномная нуклеиновая кислота (нитевидные вирусы). При кубическом типе симметрии вирионы могут быть в виде многогранников, чаще всего- двадцатигранники - икосаэдры.

3. Просто устроенные вирусы имеют только нуклеокапсид , т.е. комплекс генома с капсидом и называются “голыми”.

4. У других вирусов поверх капсида есть дополнительная мембраноподобная оболочка, приобретаемая вирусом в момент выхода из клетки хозяина- суперкапсид. Такие вирусы называют “одетыми”.

Кроме вирусов, имеются еще более просто устроенные формы способных передаваться агентов - плазмиды, вироиды и прионы.

Основные этапы взаимодействия вируса с клеткой хозяина.

1. Адсорбция- пусковой механизм, связанный со взаимодействием специфических рецепторов вируса и хозяина (у вируса гриппа- гемагглютинин, у вируса иммунодефицита человека- гликопротеин gp 120).

2. Проникновение- путем слияния суперкапсида с мембраной клетки или путем эндоцитоза (пиноцитоза).

3. Освобождение нуклеиновых кислот- “раздевание” нуклеокапсида и активация нуклеиновой кислоты.

4. Синтез нуклеиновых кислот и вирусных белков, т.е. подчинение систем клетки хозяина и их работа на воспроизводство вируса.

5. Сборка вирионов- ассоциация реплицированных копий вирусной нуклеиновой кислоты с капсидным белком.

6. Выход вирусных частиц из клетки, приобретения суперкапсида оболочечными вирусами.

Исходы взаимодействия вирусов с клеткой хозяина.

1. Абортивный процесс - когда клетки освобождаются от вируса:

При инфицировании дефектным вирусом, для репликации которого нужен вирус- помощник, самостоятельная репликация этих вирусов невозможна (так называемые вирусоиды). Например, вирус дельта (D) гепатита может реплицироваться только при наличии вируса гепатита B, его Hbs - антигена, аденоассоциированный вирус- в присутствии аденовируса);

При инфицировании вирусом генетически нечувствительных к нему клеток;

При заражении чувствительных клеток вирусом в неразрешающих условиях.

2. Продуктивный процесс - репликация (продукция) вирусов:

- гибель (лизис) клеток (цитопатический эффект)- результат интенсивного размножения и формирования большого количества вирусных частиц - характерный результат продуктивного процесса, вызванного вирусами с высокой цитопатогенностью. Цитопатический эффект действия на клеточные культуры для многих вирусов носит достаточно узнаваемый специфический характер;

- стабильное взаимодействие , не приводящее к гибели клетки (персистирующие и латентные инфекции) - так называемая вирусная трансформация клетки.

3. Интегративный процесс - интеграция вирусного генома с геномом клетки хозяина. Это особый вариант продуктивного процесса по типу стабильного взаимодействия. Вирус реплицируется вместе с геномом клетки хозяина и может длительно находиться в латентном состоянии. Встраиваться в ДНК- геном хозяина могут только ДНК- вирусы (принцип “ДНК- в ДНК”). Единственные РНК- вирусы, способные интегрироваться в геном клетки хозяина- ретровирусы, имеют для этого специальный механизм. Особенность их репродукции- синтез ДНК провируса на основе геномной РНК с помощью фермента обратной транскриптазы с последующим встраиванием ДНК в геном хозяина.

Основные методы культивирования вирусов.

1. В организме лабораторных животных.

2. В куриных эмбрионах.

3. В клеточных культурах - основной метод.

Типы клеточных культур.

1. Первичные (трипсинизированные) культуры - фибробласты эмбриона курицы (ФЭК), человека (ФЭЧ), клетки почки различных животных и т.д. Первичные культуры получают из клеток различных тканей чаще путем их размельчения и трипсинизации, используют однократно, т.е. постоянно необходимо иметь соответствующие органы или ткани.

2. Линии диплоидных клеток пригодны к повторному диспергированию и росту, как правило не более 20 пассажей (теряют исходные свойства).

3. Перевиваемые линии (гетероплоидные культуры), способны к многократному диспергированию и перевиванию, т.е. к многократным пассажам, наиболее удобны в вирусологической работе- например, линии опухолевых клеток Hela, Hep и др.

Специальные питательные среды для культур клеток.

Используются разнообразные синтетические вирусологические питательные среды сложного состава, включающие большой набор различных факторов роста- среда 199, Игла, раствор Хэнкса, гидролизат лактальбумина. В среды добавляют стабилизаторы рН (Hepes), различные в видовом отношении сыворотки крови (наиболее эффективной считают эмбриональную телячью сыворотку), L-цистеин и L-глютамин.

В зависимости от функционального использования среды могут быть ростовые (с большим содержанием сыворотки крови) - их используют для выращивания клеточных культур до внесения вирусных проб, и поддерживающие (с меньшим содержанием сыворотки или ее отсутствием)- для содержания инфицированных вирусом клеточных культур.

Выявляемые проявления вирусной инфекции клеточных культур.

1. Цитопатический эффект.

2. Выявление телец включений.

3. Выявление вирусов методом флюоресцирующих антител (МФА), электронной микроскопией, авторадиографией.

4. Цветная проба. Обычный цвет используемых культуральных сред, содержащих в качестве индикатора рН феноловый красный, при оптимальных для клеток условиях культивирования (рН около 7,2)- красный. Размножение клеток меняет рН и соответственно- цвет среды с красного на желтый за счет смещения рН в кислую сторону. При размножении в клеточных культурах вирусов происходит лизис клеток, изменения рН и цвета среды не происходит.

5. Выявление гемагглютинина вирусов- гемадсорбция, гемагглютинация.

6. Метод бляшек (бляшкообразования). В результате цитолитического действия многих вирусов на клеточные культуры образуются зоны массовой гибели клеток. Выявляют бляшки- вирусные “ клеточно- негативные” колонии.

Номенклатура вирусов.

Название семейства вирусов заканчивается на “viridae”, рода- “virus”, для вида обычно используют специальные названия, например - вирус краснухи, вирус иммунодефицита человека- ВИЧ, вирус парагриппа человека типа 1 и т.д.

Вирусы бактерий (бактериофаги).

Естественной средой обитания фагов является бактериальная клетка, поэтому фаги распространены повсеместно (например, в сточных водах). Фагам присущи биологические особенности, свойственные и другим вирусам.

Наиболее морфологически распространенный тип фагов характеризуется наличием головки- икосаэдра, отростка (хвоста) со спиральной симметрией (часто имеет полый стержень и сократительный чехол), шипов и отростков (нитей), т.е. внешне несколько напоминают сперматозоид.

Взаимодействие фагов с клеткой (бактерией) строго специфично, т.е. бактериофаги способны инфицировать только определенные виды и фаготипы бактерий.

Основные этапы взаимодействия фагов и бактерий.

1. Адсорбция (взаимодействие специфических рецепторов).

2. Внедрение вирусной ДНК (инъекция фага) осуществляется за счет лизирования веществами типа лизоцима участка клеточной стенки, сокращения чехла, вталкивания стержня хвоста через цитоплазматическую мембрану в клетку, впрыскивание ДНК в цитоплазму.

3. Репродукция фага.

4. Выход дочерних популяций.

Основные свойства фагов.

Различают вирулентные фаги , способные вызвать продуктивную форму процесса, и умеренные фаги , вызывающие редуктивную фаговую инфекцию (редукцию фага). В последнем случае геном фага в клетке не не реплицируется, а внедряется (интегрируется) в хромосому клетки хозяина (ДНК в ДНК), фаг превращается в профаг. Этот процесс получил название лизогении . Если в результате внедрения фага в хромосому бактериальной клетки она приобретает новые наследуемые признаки, такую форму изменчивости бактерий называют лизогенной (фаговой) конверсией. Бактериальную клетку, несущую в своем геноме профаг, называют лизогенной, поскольку профаг при нарушении синтеза особого белка- репрессора может перейти в литический цикл развития, вызвать продуктивную инфекцию с лизисом бактерии.

Умеренные фаги имеют важное значение в обмене генетическим материалом между бактериями- в трансдукции (одна из форм генетического обмена). Например, способностью вырабатывать экзотоксин обладают только возбудитель дифтерии, в хромосому которого интегрирован умеренный профаг, несущий оперон tox, отвечающий за синтез дифтерийного экзотоксина. Умеренный фаг tox вызывает лизогенную конверсию нетоксигенной дифтерийной палочки в токсигенную.

По спектру действия на бактерии фаги разделяют на:

Поливалентные (лизируют близкородственные бактерии, например сальмонеллы);

Моновалентные (лизируют бактерии одного вида);

Типоспецифические (лизируют только определенные фаговары возбудителя).

На плотных средах фаги обнаруживают чаще с помощью спот (spot) - теста (образование негативного пятна при росте колоний) или методом агаровых слоев (титрования по Грациа).

Практическое использование бактериофагов.

1. Для идентификации (определение фаготипа).

2. Для фагопрофилактики (купирование вспышек).

3. Для фаготерапии (лечение дисбактериозов).

4. Для оценки санитарного состояния окружающей среды и эпидемиологического анализа.



Если вирусы выделить в чистом виде, то они существуют в форме кристаллов (у них нет собственного обмена веществ, размножения и других свойств живого). Из-за этого многие ученые считают вирусы промежуточной стадией между живыми и неживыми объектами.

Вирусы – это неклеточная форма жизни. Вирусные частицы (вирионы) – это не клетки:

  • вирусы гораздо меньше клеток;
  • вирусы гораздо проще клеток по строению – состоят только из нуклеиновой кислоты и белковой оболочки, состоящей из множества одинаковых молекул белка.
  • вирусы содержат либо ДНК, либо РНК.

Синтез компонентов вируса:

  1. В нуклеиновой кислоте вируса содержится информация о вирусных белках. Клетка делает эти белки сама, на своих рибосомах.
  2. Нуклеиновую кислоту вируса клетка размножает сама, с помощью своих ферментов.
  3. Затем происходит самосборка вирусных частиц.

Значение вирусов:

  • вызывают инфекционные заболевания (грипп, герпес, СПИД и т.д.)
  • некоторые вирусы могут встраивать свою ДНК в хромосомы клетки-хозяина, вызывая мутации.


Вирусы: исторические сведения

Вирусы впервые были открыты в 1892 г. выдающимся русским биологом Д.И. Ивановским, который стал основателем новой биологической дисциплины - вирусологии. Вирусология сегодня - одна из наиболее быстро развивающихся отраслей биологии. Не исключено, что в будущем царство вирусов будет разделено на несколько царств.

О существовании вирусов человечество узнало 110 лет назад. 12 февраля 1892 г. на заседании Российской академии наук Д.И. Ивановский сообщил о своем открытии: возбудителем мозаичной болезни табака является организм, способный проходить через фильтры, которые задерживают бактерии. Леффлер и Фрош в 1898 году показали, что болезнь крупного рогатого скота - ящур - передается от одного животного другому неким агентом, проходящим через фильтры, которые задерживают даже самые мелкие бактерии. Термин "вирус" был предложен М. Бейеринком в 1899 г. Выяснилось, что вирусы вызывают заболевания не только растений, но и бактерий, насекомых, водорослей, грибов, животных и человека.

Выяснить структуру вирусов удалось после изобретения электронного микроскопа. По своим размерам вирусы занимают место между самыми мелкими бактериальными клетками и самыми крупными органическими молекулами - от 0,02 до 0,3 мкм. Для сравнения размеры клеток человека - от 3 до 30 мкм.

Долгие годы продолжался спор: вирусы - это живые существа или часть неживой природы . Невозможность существования и размножения вирусов вне клетки, их способность к самосборке и кристаллизации говорили о том, что вирус ведет себя как "неживая" материя. После установления природы гена и обнаружения в вирусах генетического материала, присущего живым организмам, вирусы стали относить к живой природе.

Согласно современным представлениям, вирусы лежат на границе "живого" и "неживого", это внеклеточные формы жизни, способные проникать в определенные живые клетки и размножаться только внутри них.

Генетический аппарат вирусов представлен различными формами нуклеиновых кислот, такого разнообразия нет ни у одной из других форм жизни. У всех живых организмов, кроме вирусов, генетический аппарат состоит из двунитевой молекулы дезоксирибонуклеиновой кислоты (ДНК), а рибонуклеиновая кислота (РНК), выполняющая в клетках роль переносчика информации, всегда однонитевая. У вирусов же существуют все возможные варианты устройства генетического аппарата: одно- и двунитевая РНК, одно- и двунитевая ДНК. При этом и вирусная РНК, и вирусная ДНК могут быть либо линейными, либо замкнутыми в кольцо.

К началу XXI века было исследовано свыше 1000 разнообразных вирусов, вызывающих такие заболевания, как грипп, герпес, гепатит, оспа, полиомиелит, цитомегаловирусная инфекция, энцефалит, корь и др. В целом около 80% инфекционных заболеваний, регистрируемых в настоящее время, вызывают вирусы. Первые места по массовости поражения занимают острые респираторные заболевания, грипп, вирусный гепатит, теперь к ним прибавился и СПИД. Широко распространены вирусные заболевания и у животных. Хорошо известны эпидемии вирусов у птиц, овец, коров. В результате эпидемии вируса висны в 30-40-е годы прошлого века исландцы были вынуждены забить более ста пятидесяти тысяч животных. Вирус лейкоза птиц причинил убыток птицеводству США в 1955 году в размере свыше 60 млн долларов. Известна широкая пораженность крупного рогатого скота вирусом лейкоза. В некоторых странах мира им заражено свыше 80% коров и быков.

] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

§ 34. Вирусы

Наряду с одноклеточными и многоклеточными организмами в природе существуют неклеточные формы жизни. Это - вирусы. Вирусы (от лат. virus - яд) были открыты в 1892 г. русским ученым Д.И. Ивановским при исследовании мозаичной болезни листьев табака.

торая возникает из плазматической мембраны клетки хозяина.

Многие из вирусов во внешней среде имеют форму кристаллов. Размеры вирусов колеблются в пределах от 20 до 300 нм (рис. 5.13).

Строение вирусов. Вирусы устрое ны очень просто. Каждая вирусная частица состоит из РНК или ДНК, заключенной в белковую оболочку - капсид (рис. 5.12). Полностью сформированная инфекционная частица называется ви-рионом. Белковая оболочка защищает нуклеиновую кислоту от неблагоприятных условий внешней среды, а также препятствует проникновению к ней клеточных ферментов, предотвращая тем самым ее расщепление.

У некоторых вирусов (например, герпеса или гриппа) есть еще и дополнительная липопротеидная оболочка, ко 161

Поскольку в составе вирусов присутствует всегда один тип нуклеиновой кислоты - ДНК или РНК, вирусы делят на ДНК-содержащие и РНК-сод ержащие. Подавляющее большинство вирусов относится к РНК-типу (табл. 5.3.)

__________ 5.3. Характеристика некоторых групп вирусов ____________________

ДНК- или Ч о Об

Группа вирусов РНК- - °" Хозяева Заболевания человека

Безоболочечные с РНК Одна Нет Растения, бакте- Полиомиелит

плюс-нитью РНК рии, животные

Оболочечныес РНК Одна Есть Членистоногие, Некоторые виды раплюс-нитью РНК позвоночные ка, СПИД, желтая

лихорадка

С минус-нитью РНК Одна Есть Растения, жи- Грипп, свинка, бе- РНК вотные шенство

Вироиды РНК Одна Нет Только растения

Сдвунитчатой РНК Две Есть Растения и жи- Колорадская лихо- РНК вотные радка

С малогеномной ДНК Одна Есть Главным обра- Вирусный гепатитДНК или две зом животные бородавки

Со средне- и круп- ДНК Две Есть Животные Герпес, некоторые

ногеномной ДНК виды рака, оспа

При этом наряду с двухцепочечными ДНК и одноцепочечными РНК встречаются одноцепочечные ДНК и двухцепочечные РНК. ДНК имеют линейную или кольцевую структуру, а РНК, как правило, - линейную.

Воспроизводятся вирусы только в живых клетках других организмов, вне которых они не проявляют никаких признаков жизни. Молекулы вирусной РНК могут самовоспроизводиться, хотя это характерно только для ДНК. Это означает, что вирусная РНК является источником генетической информации и одновременно иРНК. Поэтому в пораженной клетке по программе нуклеиновой кислоты вируса на рибосомах хозяина синтезируются специфические вирусные белки и осуществляется процесс самосборки их с нуклеиновой кислотой в новые вирусные частицы (рис. 5.14). Клетка при этом истощается и погибает. При поражении некоторыми вирусами клетки не разрушаются, а начинают усиленно делиться, часто образуя у животных, в том числе и у человека, злокачественные опухоли.

К вирусам относятся также вироиды и бактериофаги. Вироиды представляют собой короткие одноцепочечные молекулы РНК, лишенные капсида. Они являются возбудителями ряда заболеваний растений, животных и человека (например, раннее старческое слабоумие).

Вирусы, поражающие бактерии, называются бактериофагами, или фагами. Вирусы цианобактерий называют цианофагами, актиномицетов - актинофагами.

Частица фага кишечной палочки состоит из головки, от которой отходит полый стержень, окруженный чехлом из сократительного белка (рис. 5.15). Стержень заканчивается базальной пластинкой, на которой закреплено 6 нитей. Внутри головки находится ДНК. Используя отростки, бактериофаг прикрепляется к поверхности кишечной палочки и в месте соприкосновения с ней растворяет с помощью фермента клеточную стенку. После этого за счет сокращения головки молекула ДНК фага впрыскивается через канал стержня в клетку. Примерно через 10-15 мин под действием этой ДНК перестраивается весь метаболизм бактериальной клетки, и она начинает воспроизводить ДНК бактериофага, а не собственную ДНК. При этом синтезируется и фаговый белок. Завершается этот процесс появлением 200-1000 новых фаговых частиц, в результате чего клетка бактерии гибнет (рис. 5.16а).

Бактериофаги, образующие в зараженных клетках новое поколение фаговых частиц, приводя к разрушению (лизису) бактериальную клетку, называются вирулентными фагами.

Некоторые бактериофаги внутри клетки хозяина не реплицируются. Вместо этого их нуклеиновая кислота включается в ДНК хозяина, образуя с ней единую молекулу, способную к репликации (рис. 5.166). Такие фаги получили название умеренных фагов, или профагов.

Вирусные болезни. Поселяясь в клетках живых организмов, вирусы вызывают многие опасные заболевания сельскохозяйственных растений (мозаичная болезнь табака, томатов, огурцов, скручивание листьев, карликовость, желтуха и др.), домашних животных (ящур, чума свиней и птиц, инфекционная анемия лошадей, рак и др.) и человека. Эти болезни резко снижают урожайность культур и приводят к массовой гибели животных.

Вирусы являются возбудителями многих опасных заболеваний человека, в числе которых - грипп, корь, оспа, полиомиелит, свинка, бешенство, желтая лихорадка, СПИД и др.

СПИД (синдром приобретенного иммунодефицита) - заболевание человека, поражающее преимущественно его иммунную систему. Поражение

системы клеточного иммунитета человека проявляется развитием прогрессирующих инфекционных заболеваний и злокачественных новообразований, причем организм становится беззащитным к микробам, которые в обычных условиях не вызывают болезни.

Возбудитель болезни - вирус иммунодефицита человека (ВИЧ). Геном ВИЧ представлен двумя идентичными молекулами РНК, состоящими примерно из 10 тыс. пар оснований. При этом вирусы иммунодефицита, выделенные от различных больных СПИДом, отличаются друг от друга по количеству оснований (от 80 до 100).

К настоящему времени установлено, что ВИЧ кодирует не менее пяти структурных белков и фермент обратную транскриптазу, которые используются в качестве материала при формировании новых вирусных частиц в инфицированной клетке.

Проникнув в клетку, вирионы ВИЧ распадаются (рис. 5.17). При этом РНК и фермент высвобождаются. Обратная транскриптаза, используя вирус РНК в качестве матрицы, синтезирует по ее подобию вирусспецифичес-кую ДНК (это так называемая минус-ДНК). Этот процесс называется обратной транскрипцией. Затем, как ее зеркальное отражение, синтезируется другая нить ДНК - плюс-ДНК. Вместе они образуют ДНК-транскрипт, или ДНК-копию, вирусного генома. Последний проникает в ядро инфицированной клетки и встраивается в ее геном (в таком состоянии его еще называют провирусом).

Типичных симптомов, характерных именно для СПИДа, нет. При этом заболевании происходит снижение защитных свойств организма из-за нарушения функционирования иммунной системы. В результате человек, пораженный вирусом иммунодефицита, гораздо легче заболевает и в более тяжелой форме переносит другие инфекционные болезни.

Для СПИДа характерен очень длительный инкубационный период (время с момента заражения до появления первых признаков болезни). У взрослых он составляет в среднем около 8 лет. Предполагается, что ВИЧ может сохраняться в организме человека пожизненно. Это значит, что до конца своей жизни инфицированные люди могут заражать других, а при соответствующих условиях могут сами заболеть СПИДом.

Один из главных путей передачи ВИЧ и распространения СПИДа - половые контакты, поскольку возбудитель его наиболее часто находится в крови, сперме и влагалищных выделениях инфицированных людей. Другой путь инфицирования - посредством нестерильных медицинских инструментов, которыми зачастую пользуются наркоманы. Возможна также передача инфекции через кровь и некоторые лекарственные препараты, при пересадке органов и тканей, использовании донорской спермы и др. Заражение может происходить и при вынашивании плода, во время рождения ребенка или в период его грудного вскармливания матерью, инфицированной ВИЧ или больной СПИДом.

Гарантией защиты от СПИДа является здоровый образ жизни, крепость брачных уз и семьи. В качестве особой меры профилактики следует выделить использование механических контрацептивов - презервативов.

Наряду с одноклеточными и многоклеточными организмами в природе существуют неклеточные формы жизни - вирусы. Они имеют простую организацию и воспроизводятся только в клетках живых организмов, используя белоксинтезирующую систему клеток. Вирусы являются причиной возникновения многих заболеваний человека, животных и растений.

1. Почему вирусы называют не организмами, а неклеточными формами жизни? 2. Какие признаки вирусов отличают их от неживой материи? 3. Какое строение имеют и как воспроизводятся вирусы и фаги? 4. Какие болезни вызывают вирусы у растений, животных и человека? 5. Что такое СПИД и что является возбудителем этой болезни? 6. Каковы особенности строения и свойства ВИЧ? 7. Каковы пути передачи ВИЧ и распространения СПИДа? 8. Каким образом человек может обезопасить себя от СПИДа? 9. Какие существуют предположения относительно происхождения вирусов?

Общая биология: Учебное пособие для 11-го класса 11-летней общеобразовательной школы, для базового и повышенного уровней. Н.Д. Лисов, Л.В. Камлюк, Н.А. Лемеза и др. Под ред. Н.Д. Лисова.- Мн.: Беларусь, 2002.- 279 с

Содержание учебника Общая биология: Учебное пособие для 11-го класса:

    Глава 1. Вид - единица существования живых организмов

  • § 2. Популяция - структурная единица вида. Характеристика популяции
  • Глава 2. Взаимоотношения видов, популяций с окружающей средой. Экосистемы

  • § 6. Экосистема. Связи организмов в экосистеме. Биогеоценоз, структура биогеоценоза
  • § 7. Движение вещества и энергии в экосистеме. Цепи и сети питания
  • § 9. Круговорот веществ и поток энергии в экосистемах. Продуктивность биоценозов
  • Глава 3. Формирование эволюционных взглядов

  • § 13. Предпосылки возникновения эволюционной теории Ч. Дарвина
  • § 14. Общая характеристика эволюционной теории Ч. Дарвина
  • Глава 4. Современные представления об эволюции

  • § 18. Развитие эволюционной теории в последарвиновский период. Синтетическая теория эволюции
  • § 19. Популяция - элементарная единица эволюции. Предпосылки эволюции
  • Глава 5. Происхождение и развитие жизни на Земле

  • § 27. Развитие представлений о возникновении жизни. Гипотезы происхождения жизни на Земле
  • § 32. Основные этапы эволюции растительного и животного мира
  • § 33. Многообразие современного органического мира. Принципы систематики
  • Глава 6. Происхождение и эволюция человека

  • § 35. Формирование представлений о происхождении человека. Место человека в зоологической системе

В многовековой истории нашей планеты в развитие всей флоры и фауны постоянно вмешивались невидимые захватчики – вирусы (лат. virus – яд).
В связи с микроскопическим размером вирусы лишены такого сложного внутреннего многоклеточного строения как у живых организмах, так как они в разы меньше любой живой клетки и даже намного меньше какой-либо бактерии. Влиянию вирусов подвержены все известные живые организмы, не только люди, животные, рептилии и рыбы, но и всевозможные растения.
Только в начале 20-ого века, после изобретения электронного микроскопа, ученые смогли увидеть своими глазами крошечных возбудителей болезней, о которых до того момента уже было высказано великое множество теорий. Определенные вирусы человека отличались между собой по форме и размеру. В зависимости от типа болезни симптомы разных заболеваний проявляются по-разному: воспаляется кожа, внутренние органы или суставы.

Вирусная инфекция

В 1852 году Дмитрию Иосифовичу Ивановскому (русский ботаник) удалось получить инфекционный экстракт из растений табака, который был заражен мозаичной болезнью. Такая структура получила название вируса табачной мозаики.

Строение вируса


В самом центре вирусной частицы располагается геном (наследственная информация, которая представлена ДНК или РНК структурой – позиция 1). Вокруг генома располагается капсид (позиция 2), который представлен белковой оболочкой. На поверхности белковой оболочки капсида располагается липопротеидная оболочка (позиция 3). Внутри оболочки располагаются капсомеры (позиция 4). Каждый капсомер состоит из одной или двух белковых нитей. Число капсомеров для каждого вируса строго постоянно. Каждый вирус содержит определенное число капсомеров, поэтому их количество у разных видов вируса
существенно отличается. Некоторые вирусы не имеют в своем строении белковой оболочки (капсида). Такие вирусы называют простыми. И наоборот, вирусы, которые в своем строении имеют еще одну наружную (дополнительную липопротеидную) оболочку называются сложными. У вирусов различают две жизненные формы. Внеклеточная жизненная форма вируса называется варион (состояние покоя, ожидания). Внутриклеточная форма жизни вируса, которая активно репродуцирует, называется вегетативная.

Свойства вирусов

Вирусы не имеют клеточного строения, их относят к мельчайшим живым организмам, воспроизводятся внутри клеток, имеют простое строение, большинство из них вызывают различные болезни, каждый тип вируса распознает и инфицирует лишь определенные типы клеток, содержат только один тип нуклеиновой кислоты (ДНК или РНК).

Классификация вирусов

Как клетки организма усваивают вещества

В отличие от других живых организмов вирусу для воспроизводства потомства нужны живые клетки. Сам по себе он не умеет размножаться. К примеру, клетки организма человека состоят из ядра (в нем сосредоточена ДНК — генетическая карта, план действий клетки для поддержания ее жизнедеятельности). Ядро клетки окружает цитоплазма, в которой расположены митохондрии (они вырабатывают энергию для химических реакций, лизосомы (в них расщепляются поступившие из вне материалы), полисомы и рибосомы (в них вырабатываются белки и ферменты для осуществления химических реакций, которые происходят в клетке). Вся цитоплазма клетки, вернее ее пространство пронизано сетью канальцев, по которым всасываются нужные вещества, а также выводятся ненужные. Также клетка окружена мембраной, которая защищает ее и выполняет роль двустороннего фильтра. Мембрана клетки постоянно вибрирует. При наличии на поверхности мембраны корпускулу белка она изгибается и заключает его в пищеварительный пузырек, который втягивает в клетку. Далее мозговой центр клетки (ядро) распознает поступившее извне вещество и дает серию команд центрам, которые расположены в цитоплазме. Они разлагают поступившее вещество на более простые соединения. Часть полезных соединений используют для поддержания жизнедеятельности и выполнения запрограммированных функций, а ненужные соединения выводят наружу из клетки. Так осуществляется процесс поглощения, переваривания, усвоения веществ в клетке и вывода ненужных наружу.

Размножение вирусов


Как отмечалось выше, вирусу для воспроизводства себе подобных нужны живые клетки, потому что сам по себе он не умеет размножаться. Процесс проникновения вируса в клетку состоит из нескольких этапов.

Первый этап проникновения вируса в клетку заключается в осаждении (адсорбции посредством электрического взаимодействия) его на поверхности клетки – мишени. Клетка – мишень должна в свою очередь обладать соответствующими поверхностными рецепторами. Без наличия соответствующих поверхностных рецепторов вирус не может присоединиться к клетке. Поэтому, такой вирус, который присоединился к клетке в результате электрического взаимодействия можно убрать путем встряхивания. Второй этап проникновения вируса в клетку называют необратимым. При наличии соответствующих рецепторов вирус прикрепляется к клетке и белковые шипы или нити начинают взаимодействовать с рецепторами клетки. В качестве рецепторов клетки выступает белок или гликопротеид, который обычно специфичен для каждого вируса.

Во время третьего этапа вирус всасывается (перемещается) в клеточной мембране с помощью внутриклеточных мембранных пузырьков.

В четвертом этапе ферменты клетки расщепляют вирусные белки, и таким образом освобождается из «заточения» геном вируса, в котором располагается наследственная информация, которая представлена ДНК или РНК структурой. Затем спираль РНК быстро разворачивается и устремляется в ядро клетки. В ядре клетки геном вируса изменяет генетическую информацию клетки и реализует свою. В результате таких изменений работа клетки полностью дезорганизуется и вместо нужных ей белков и ферментов клетка начинает синтезировать вирусные (видоизменённые) белки и ферменты.


Время прошедшее с момента проникновения вируса в клетку до выхода новых варионов называется скрытым, или латентным периодом. Оно может изменяться от нескольких часов (оспа, грипп) до нескольких суток (корь, аденовирус).

 

 

Это интересно: